Taking the A-train: actin-based force generators and organelle targeting.

Trends Cell Biol

Department of Anatomy and Cell Biology, Columbia University, 630 West 168th Street-P&S 12-425, New York, NY 10032, USA.

Published: September 2003

The actin-driven process of cytoplasmic streaming in plant cells is widely believed to be the earliest documented example of cytoskeleton-driven organelle movement. In the decades since these seminal findings, two mechanisms of actin-based intracellular movement have been identified in multiple cell types: one is myosin dependent and the other is dependent upon the Arp2/3 complex for actin nucleation and polymerization. Here, we describe mechanisms of force generation and directed movement that use the actin cytoskeleton, as well as those that target actin-dependent force generators to different subcellular compartments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0962-8924(03)00174-0DOI Listing

Publication Analysis

Top Keywords

force generators
8
a-train actin-based
4
actin-based force
4
generators organelle
4
organelle targeting
4
targeting actin-driven
4
actin-driven process
4
process cytoplasmic
4
cytoplasmic streaming
4
streaming plant
4

Similar Publications

Novel Meningoencephalomyelitis Associated With Vimentin IgG Autoantibodies.

JAMA Neurol

January 2025

Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China.

Importance: Autoantibodies targeting astrocytes, such as those against glial fibrillary acidic protein (GFAP) or aquaporin protein 4, are crucial diagnostic markers for autoimmune astrocytopathy among central nervous system (CNS) autoimmune disorders. However, diagnosis remains challenging for patients lacking specific autoantibodies.

Objective: To characterize a syndrome of unknown meningoencephalomyelitis associated with an astrocytic autoantibody.

View Article and Find Full Text PDF

Dust emissions from open-pit mining pose a significant threat to environmental safety and human health. Currently, the range of dust suppressants used in coal mining is limited, often failing to account for their suitability across various stockpiles. This oversight results in poor infiltration after application, leading to insufficient crust formation and reduced durability.

View Article and Find Full Text PDF

Context.—: Generative artificial intelligence (AI) has emerged as a transformative force in various fields, including anatomic pathology, where it offers the potential to significantly enhance diagnostic accuracy, workflow efficiency, and research capabilities.

Objective.

View Article and Find Full Text PDF

DNA nanostructures (DNs) have gained popularity in various biomedical applications due to their unique properties, including structural programmability, ease of synthesis and functionalization, and low cytotoxicity. Effective utilization of DNs in biomedical applications requires a fundamental understanding of their interactions with living cells and the mechanics of cellular uptake. Current knowledge primarily focuses on how the physicochemical properties of DNs, such as mass, shape, size, and surface functionalization, affect uptake efficacy.

View Article and Find Full Text PDF

Thermal- and Rate-Regulated Fast Switchable Adhesion within Glass Transition Zone of an Epoxy Polymer.

Langmuir

January 2025

Institute of Advanced Manufacturing Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Changzhou 213164, People's Republic of China.

Thermoresponsive shape memory polymer (SMP) adhesives have demonstrated a high adhesion strength and large switching ratios on different substrates. However, a long response time to switch adhesion on or off is generally encountered. This study provides a fast adhesion switching method based on the temperature and rate dependence of adhesion within the glass-transition zone of an epoxy polymer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!