Dosed adaptation to environmental factors is an efficient non-drug means for increasing the resistance of organs or the body as a whole. We demonstrated earlier that nitric oxide (NO) plays an important role in adaptive defense of the organism, in particular due to activation of heat shock protein (HSP) synthesis. A key question remained open--to what extent the formation of adaptive defense depends on central mechanisms and to what extent on the intracellular mechanisms immediately responding to the adapting factor, and whether the NO-dependent activation of HSP synthesis plays a role in adaptation of isolated cells. In the present study we looked into the possibility of producing a protective effect of adaptation to heat in cell culture. A 6-day adaptation to heat limited to 17% the decrease in metabolic activity induced by heat shock in H9c2 cardiomyoblasts. The development of adaptation was associated with increased NO production. Treatment of cells with the inhibitor of NO synthase L-NNA (100 micro M) prevented the development of adaptive protection. Adaptation of cell culture enhanced synthesis of HSP70 but not HSP27. Blockade of HSP70 synthesis with quercetin (50 micro M) left unchanged the protective effect of adaptation. Inhibition of NO synthesis restricted the adaptation-induced HSP70 synthesis. Therefore, the formation of adaptation at the cell level may result from a direct action of an environmental factor without participation of neuro-humoral factors. Such adaptation involves NO-dependent mechanisms divorced from the activation of HSP70 synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1025047303523DOI Listing

Publication Analysis

Top Keywords

heat shock
16
adaptation heat
12
hsp70 synthesis
12
adaptation
10
nitric oxide
8
plays role
8
adaptive defense
8
hsp synthesis
8
protective adaptation
8
cell culture
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!