Solid-phase dendrimer chemistry using a symmetrical 1 --> 3 C-branched isocyanate monomer was used to prepare radiation-grafted polymers with enhanced loading. After evaluation of the physical and chemical properties of these new high-loading supports, they were tested in the multiple parallel synthesis of hydantoins.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1024867013184DOI Listing

Publication Analysis

Top Keywords

loading amplification
4
amplification radiation
4
radiation grafted
4
grafted polymers
4
polymers crowns
4
crowns lanterns
4
lanterns application
4
application solid-phase
4
solid-phase synthesis
4
synthesis hydantoin
4

Similar Publications

Information on circulating HBV (sub-)genotype, variants, and hepatitis D virus (HDV) coinfection, which vary by geographical area, is crucial for the efficient control and management of HBV. We investigated the genomic characteristics of HBV (with a prevalence of 8.1%) and the prevalence of HDV in Nigeria.

View Article and Find Full Text PDF

In the year 2019, a highly virulent coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged, precipitating the outbreak of the illness known as coronavirus disease 2019 (COVID-19). The commonly employed reverse transcription polymerase chain reaction (RT-qPCR) methodology serves to estimate the viral load in each patient's sample by employing a standard curve. However, it is imperative to recognize that this technique exhibits limitations with respect to clinical diagnosis and therapeutic applications, since an advancement of the conventional polymerase chain reaction methods, digital polymerase chain reaction (digital PCR or DDPCR), enables the direct quantification and clonal amplification of nucleic acid strands.

View Article and Find Full Text PDF

Enhanced Detection of Viable O157:H7 in Romaine Lettuce Wash Water Using On-Filter Propidium Monoazide-Quantitative PCR.

Microorganisms

December 2024

Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, MD 20742, USA.

Accurate detection of viable O157:H7 in fresh produce wash water is critical for ensuring food safety and mitigating foodborne illnesses. This study evaluated an optimized on-filter propidium monoazide (PMA)-quantitative PCR (qPCR) method for detecting viable O157:H7 in romaine lettuce wash water, involving PMA pretreatment on a filter to block DNA amplification from dead cells. The method consistently detected viable cells across chemical oxygen demand (COD) levels of 1000 and 200 mg O/L, with no significant differences ( > 0.

View Article and Find Full Text PDF

Based on a prototype of the Beijing subway tunnel, this research conducts large-scale model experiments to systematically investigate the vibration response patterns of tunnels with different damage levels under the influence of measured train loads. Initially, the polynomial fitting modal identification method (Levy) and the model test preparation process are introduced. Then, using time-domain peak acceleration, frequency response function, frequency-domain modal frequency, and modal shape indicators, a detailed analysis of the tunnel's dynamic response is conducted.

View Article and Find Full Text PDF

Sensitivity-enhanced self-powered biosensing platform for detection of sugarcane smut using Mn-doped ZIF-67, RCA-DNA nano-grid array and capacitor.

Biosens Bioelectron

January 2025

Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China. Electronic address:

Sugarcane smut is a widespread fungal disease, which severely impairs the quality and sugar yield of sugarcane. Early detection is crucial for mitigating its impact, which makes the development of a highly sensitive and accurate detection method essential. Herein, the Mn-doped zeolite imidazolate framework (ZIF-67), synthesized via a nano-confined-reactor approach, is designed to significantly enhance electron transport and boost the enzyme loading capacity within biofuel cells, thereby potentially enhancing their overall performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!