A spectrophotometric method for the determination of ionic surfactants with Bromophenol Blue (BPB) based on incorporation into a precipitated chitosan was studied. Cationic surfactants (CS+), such as a quaternary ammonium ion containing a long-chain alkyl group, associate with BPB2- buffered at about pH 9 to form the ion associate (CS+)2 x BPB2-. CS+ associates with anionic surfactants (AS-). In the presence of a definite amount of CS+, an increase in the amount of AS- leads to a decrease in the amount of excess CS+, and therefore to a decrease in the amount of the ion associate of CS+ with BPB2-. The addition of a chitosan dissolved in acetic acid to a solution containing these ion associates leads immediately to precipitation of the chitosan and the incorporation of the ion associates (CS+)2 x BPB2- or CS+ x AS- into the precipitated chitosan. After centrifuging, ionic surfactants can be determined by the following two methods: (1) the absorbance of the supernatant solution is measured at 590 nm. (2) After the supernatant solution is separated, the precipitate is dissolved in an acetic acid solution and the absorbance is measured at 625 nm. Because the color of the precipitate is judged by the naked eye, this can be applied to the visual method. This is a simple and rapid method for the determination of a 10(-6) M order of ionic surfactants.

Download full-text PDF

Source
http://dx.doi.org/10.2116/analsci.19.1133DOI Listing

Publication Analysis

Top Keywords

ionic surfactants
12
method determination
8
precipitated chitosan
8
ion associate
8
cs+2 bpb2-
8
bpb2- cs+
8
decrease amount
8
dissolved acetic
8
acetic acid
8
acid solution
8

Similar Publications

Mesoporous bioactive glass (MBG) is an advanced biomaterial widely recognized for its application in bone regenerative engineering. This study synthesized an MBG powder (80 mol% SiO, 5 mol% PO, and 15 mol% CaO) using a facile sol-gel method with the non-ionic surfactant Pluronic P123, which acted as a pore-forming agent. MBGs form bioactive surfaces that facilitate HA formation, and the presence of Pluronic P123 increases the surface area and promotes HA nucleation.

View Article and Find Full Text PDF

Cellulose nanocrystals (CNCs) prepared by sulfuric acid hydrolysis were added to phthalocyanine green colour pastes with a surfactant to improve stability. The particle size, zeta potential, absorbance, and microstructure of the colour pastes were analyzed and characterized. The mechanism of CNCs to enhance the stability of hydrophobic phthalocyanine green in water was investigated.

View Article and Find Full Text PDF

NMR and MD Simulations of Non-Ionic Surfactants.

Molecules

January 2025

Department of Chemistry and Biochemistry, State University of New York Brockport, Brockport, NY 14420, USA.

Non-ionic surfactants are an important solvent in the field of green chemistry with tremendous application potential. Understanding their phase properties in bulk or in confined environments is of high commercial value. In recent years, the combination of molecular dynamics (MD) simulations with multinuclear solid-state NMR spectroscopy and calorimetric techniques has evolved into the most powerful tool for their investigation.

View Article and Find Full Text PDF

Pesticide residues on fruits pose a global food safety concern, emphasizing the need for effective and practical removal strategies to ensure safe consumption. This study investigates the efficacy of household ingredients (corn starch, all-purpose flour, rice flour and baking soda) and four commercial fresh produce wash products in eliminating a model pesticide thiabendazole with and without a model non-ionic surfactant Alligare 90 from postharvest fruits. Surface-enhanced Raman spectroscopy (SERS) was employed for the rapid, in situ quantification of residue removal on apple surfaces.

View Article and Find Full Text PDF

We report an experimental study on how topological defects induced by cylindrical air inclusions in the ferroelectric nematic liquid crystal RM734 are influenced by ionic doping, including an ionic surfactant and ionic polymer. Our results show that subtle differences in molecular structure can lead to distinct surface alignments and topological defects. The ionic surfactant induces a planar alignment, with two -1/2 line defects adhering to the cylindrical bubble surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!