It is generally accepted that protein structures are more conserved than protein sequences, and 3D structure determination by computer simulations have become an important necessity in the postgenomic area. Despite major successes no robust, fast, and automated ab initio prediction algorithms for deriving accurate folds of single polypeptide chains or structures of intermolecular complexes exist at present. Here we present a methodology that uses selection and filtering of structural models generated by docking of known substructures such as individual proteins or domains through easily obtainable experimental NMR constraints. In particular, residual dipolar couplings and chemical shift mapping are used. Heuristic inclusion of chemical or biochemical knowledge about point-to-point interactions is combined in our selection strategy with the NMR data and commonly used contact potentials. We demonstrate the approach for the determination of protein-protein complexes using the EIN/HPr complex as an example and for establishing the domain-domain orientation in a chimeric protein, the recently determined hybrid human-Escherichia. coli thioredoxin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/prot.10439 | DOI Listing |
Mol Divers
January 2025
Chemometrics and Cheminformatics Laboratory, Department of Analytical Chemistry, Tarbiat Modares University, Tehran, Iran.
Adenosine receptors (A, A, A, A) play critical roles in cellular signaling and are implicated in various physiological and pathological processes, including inflammations and cancer. The main aim of this research was to investigate structure-activity relationships (SAR) to derive models that describe the selectivity and activity of inhibitors targeting Adenosine receptors. Structural information for 16,312 inhibitors was collected from BindingDB and analyzed using machine learning methods.
View Article and Find Full Text PDFNeurochem Res
January 2025
Drosophila and Nanoscience Research Laboratory, Department of Applied Genetics, Karnatak University, Dharwad, Karnataka, 580003, India.
This review explores the intricate connections between Drosophila models and the human blood-brain barrier (BBB) with nanoparticle-based approaches for neurological treatment. Drosophila serves as a powerful model organism due to its evolutionary conservation of key biological processes, particularly in the context of the BBB, which is formed by glial cells that share structural and functional similarities with mammalian endothelial cells. Recent advancements in nanoparticle technology have highlighted their potential for effective drug delivery across the BBB, utilizing mechanisms such as passive diffusion, receptor-mediated transcytosis, and carrier-mediated transport.
View Article and Find Full Text PDFJ Neurotrauma
January 2025
Division of Neuroscience, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA.
Effective team science requires procedural harmonization for rigor and reproducibility. Multicenter studies across experimental modalities (domains) can help accelerate translation. The Translational Outcomes Project in NeuroTrauma (TOP-NT) is a pre-clinical traumatic brain injury (TBI) consortium charged with establishing and validating noninvasive TBI assessment tools through team science.
View Article and Find Full Text PDFRNA Biol
December 2025
Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden.
We show that a small biotin-binding RNA aptamer that folds into a pseudoknot structure acts as a substrate for bacterial RNase P RNA (RPR) with and without the RNase P C5 protein. Cleavage in the single-stranded region in loop 1 was shown to depend on the presence of a RCCA-motif at the 3' end of the substrate. The nucleobase and the 2'hydroxyl at the position immediately 5' of the cleavage site contribute to both cleavage efficiency and site selection, where C at this position induces significant cleavage at an alternative site, one base upstream of the main cleavage site.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562, Japan.
U6 snRNA (small nuclear ribonucleic acid) is a ribozyme that catalyzes pre-messenger RNA (pre-mRNA) splicing and undergoes epitranscriptomic modifications. After transcription, the 3'-end of U6 snRNA is oligo-uridylylated by the multi-domain terminal uridylyltransferase (TUTase), TUT1. The 3'- oligo-uridylylated tail of U6 snRNA is crucial for U4/U6 di-snRNP (small nuclear ribonucleoprotein) formation and pre-mRNA splicing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!