The recent discovery of heterozygous de novo mutations in the glial fibrillary acidic protein (GFAP) gene as the cause of infantile and juvenile Alexander disease has shed new light on the long-standing debate whether the adult subtype has the same etiology as infantile and juvenile Alexander disease. A 40-year-old man presented with subacute left hemiplegia and ataxia. Cranial MRI revealed disseminated patchy white matter changes involving the corpus callosum, basal ganglia and brainstem. CSF investigation demonstrated elevated total protein but was otherwise normal. Mutation analysis of the GFAP gene was performed in the patient, his mother and healthy brother. A novel heterozygous mutation in exon 4, 681G-->C, predicting an amino acid substitution E223Q in the rod region of GFAP was detected in the patient and his mother but not in his healthy brother or 150 control chromosomes. We conclude that the patient is actually afflicted with Alexander disease. Mutation analysis of GFAP should be considered in patients with remitting neurological deficits, disseminated white matter lesions and absence of inflammatory CSF changes.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000072507DOI Listing

Publication Analysis

Top Keywords

white matter
12
alexander disease
12
disseminated white
8
matter lesions
8
gfap gene
8
infantile juvenile
8
juvenile alexander
8
mutation analysis
8
analysis gfap
8
patient mother
8

Similar Publications

Purpose: In this retrospective study, we aimed to evaluate the efficacy and incidence of radiation-induced brain necrosis (RBN) after volumetric modulated arc therapy-based stereotactic irradiation (VMAT-STI) for brain metastases.

Methods: In the 220 brain metastatic lesions included between January 2020 and June 2022, there were 1-9 concurrently treated lesions (median 1). A biologically effective dose (BED)10 of 80 Gy and a reduced BED10 of 50 Gy were prescribed to the gross tumor volume (GTV) and planning target volume (PTV) (PTV = GTV + 3 mm) margins, respectively.

View Article and Find Full Text PDF

Myelin abnormalities in white matter have been implicated in the pathophysiology of psychotic spectrum disorders (PSD), which are characterized by brain dysconnectivity as a core feature. Among evidence from in vivo MRI studies, diffusion imaging findings have largely supported disrupted white matter integrity in PSD; however, they are not specific to myelin changes. Using a multimodal imaging approach, the current study aimed to further delineate myelin and microstructural changes in the white matter of a young PSD cohort.

View Article and Find Full Text PDF

Objective: To investigate the clinical features and genetic variants associated with Multiple mitochondrial dysfunction syndrome (MMDS) type 3 in two children.

Methods: Two children diagnosed with MMDS type 3 at Zhuhai Maternal and Child Health Care Hospital in January 2021 were selected for this study. A retrospective analysis of their clinical data was carried out.

View Article and Find Full Text PDF

Introduction: Alcohol use disorder (AUD) is a massive burden for the individual, relatives and society. Despite this, the treatment gap is wide compared with other mental health disorders. Treatment options are sparse, with only three Food and Drug Administration (FDA)-approved pharmacotherapies.

View Article and Find Full Text PDF

Automated Quantification of Axonal and Myelin Changes in Contusion, Dislocation, and Distraction Spinal Cord Injuries: Insights into Targeted Remyelination and Axonal Regeneration.

Brain Res Bull

January 2025

Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University - Yifu Science Hall, 37 Xueyuan Road, Haidian, Beijing, 100191, China. Electronic address:

Quantifying axons and myelin is essential for understanding spinal cord injury (SCI) mechanisms and developing targeted therapies. This study proposes and validates an automated method to measure axons and myelin, applied to compare contusion, dislocation, and distraction SCIs in a rat model. Spinal cords were processed and stained for neurofilament, tubulin, and myelin basic protein, with histology images segmented into dorsal, lateral, and ventral white matter regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!