A major goal of theoretical simulations of X-ray absorption fine structure (XAFS) is to provide calculations for the interpretation and analysis of experimental data in terms of geometrical and electronic information. The extended region or EXAFS (50-2000 eV above an absorption edge) contains geometric information about the pair distribution function, i.e. distances to the nearest neighbors and their orientation. The theory of EXAFS is now well understood and has been recently reviewed [Rehr & Albers (2000). Rev. Mod. Phys. 72, 621-654]. The near-edge region (0-50 eV above the edge) or X-ray absorption near-edge structure (XANES) probes the states just above the Fermi level, and contains important electronic information, e.g. the electronic density of states (DOS). This data can be used to obtain the number of electrons or holes in the electronic configuration and spin and orbital moments on a particular atom via sum rules. XANES calculations with our ab initio code FEFF8 [Ankudinov et al. (1998). Phys. Rev. B, 58, 7565-7576] usually give semi-quantitative agreement with experiment, and permits the interpretation of XANES in terms of DOS. However, fully quantitative calculations remain a challenge. Several effects still need to be considered to treat the XANES region. These include non-spherical parts of the scattering potential and many-body effects such as multi-electron excitations, core-hole effects and local field effects (screening of the X-ray field).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/s0909049503009130 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, People's Republic of China.
Deuterated compounds have broad applications across various fields, with dehalogenative deuteration serving as an efficient method to obtain these molecules. However, the diverse electronic structures of active sites in the heterogeneous system and the limited recyclability in the homogeneous system significantly hinder the advancement of dehalogenative deuteration. In this study, we present a catalyst composed of copper single-atom sites anchored within an ordered mesoporous nitrogen-doped carbon matrix, synthesized via a mesopore confinement method.
View Article and Find Full Text PDFSmall
January 2025
Department of Physics, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
In this study, we investigate how modulating organic spacers in perovskites influences their X-ray detection performance and reveal the mechanism of low-dose detection with high sensitivity using femtosecond-transient absorption spectroscopy (fs-TAS). Particularly, we employ N,N,N',N'-tetramethyl-1,4-phenylenediammonium (TMPDA) and N,N-dimethylphenylene-p-diammonium (DPDA) as organic spacers to synthesize 2D perovskite single crystals (SCs). We find that DPDA-based SCs exhibit reduced interplanar spacing between inorganic layers, leading to increased lattice packing.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, NC 27401, USA.
Facile phase selective synthesis of copper antimony sulphide (CAS) nanostructures is important because of their tunable photoconductive and electrochemical properties. In this study, off-stoichiometric famatinite phase CAS (CAS) quasi-spherical and quasi-hexagonal colloidal nanostructures (including nanosheets) of sizes, 2.4-18.
View Article and Find Full Text PDFDalton Trans
January 2025
Shock Wave Research Laboratory, Department of Physics, Abdul Kalam Research Centre, Sacred Heart College, Tirupattur, affiliated to Thiruvalluvar University, Serkkadu, Tamil Nadu, 635 601, India.
In this study, Zinc Telluride (ZnTe) was subjected to acoustic shock waves with a Mach number of 1.5, transient pressure of 0.59 MPa, and a temperature of 520 K to analyze its stability against shock wave impact.
View Article and Find Full Text PDFNat Commun
January 2025
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, PR China.
Transition-metal layered double hydroxides are widely utilized as electrocatalysts for the oxygen evolution reaction (OER), undergoing dynamic transformation into active oxyhydroxides during electrochemical operation. Nonetheless, our understanding of the non-equilibrium structural changes that occur during this process remains limited. In this study, utilizing in situ energy-dispersive X-ray absorption spectroscopy and machine learning analysis, we reveal the occurrence of deprotonation and elucidate the role of incorporated iron in facilitating the transition from nickel-iron layered double hydroxide (NiFe LDH) into its active oxyhydroxide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!