Monocular deprivation (MD) during the critical period for the development of visual cortex causes a loss of binocular response of neurons and a shift to the open eye, a normal ocular dominance (OD) shift. However, when MD is combined with chronic inactivation of the visual cortex by muscimol, the OD distribution of the neurons shifts to the deprived eye (reverse OD shift). We have previously shown that the normal OD shift is abolished by chronic infusion of the protein kinase A (PKA) inhibitor, 8-chloroadenosine-3', 5'-cyclic monophosphorothioate, Rp-isomer (Rp-8-Cl-cAMPS), into kitten visual cortex. In this study, we investigated the effect of this inhibitor on the reverse OD shift. Combination of MD and muscimol infusion into the visual cortex of 6-wk-old kittens caused a reverse OD shift that was comparable to that seen in previous studies. However, a reverse OD shift was also seen with concurrent infusion of the PKA inhibitor with muscimol. The strongest OD shift was observed in layer IV regardless of the presence or absence of the PKA inhibitor. This suggests that the dissociation of pre- and postsynaptic activities, which occurs mainly at thalamocortical synapses, induces the reverse OD shift and that inhibition of PKA does not prevent it. Presumably, an inhibition of PKA has no effect in silent cortex. We conclude that 1) an activation of PKA is not required for the induction of the reverse OD shift, and 2) the intracellular signaling mechanism underlying MD-induced OD plasticity differs between normal and reverse OD shifts.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00313.2003DOI Listing

Publication Analysis

Top Keywords

reverse shift
24
visual cortex
20
pka inhibitor
12
shift
11
protein kinase
8
reverse
8
ocular dominance
8
dominance shift
8
kitten visual
8
inhibition pka
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!