The serotonin transporter (SERT) is an oligomeric glycoprotein with two sialic acid residues on each of two complex oligosaccharide molecules. In this study, we investigated the contribution of N-glycosyl modification to the structure and function of SERT in two model systems: wild-type SERT expressed in sialic acid-defective Lec4 Chinese hamster ovary (CHO) cells and a mutant form (after site-directed mutagenesis of Asn-208 and Asn-217 to Gln) of SERT, QQ, expressed in parental CHO cells. In both systems, SERT monomers required modification with both complex oligosaccharide residues to associate with each other and to function in homo-oligomeric forms. However, defects in sialylated N-glycans did not alter surface expression of the SERT protein. Furthermore, in heterologous (CHO and Lec4 cells) and endogenous (placental choriocarcinoma JAR cells) expression systems, we tested whether glycosyl modification also manipulates the hetero-oligomeric interactions of SERT, specifically with myosin IIA. SERT is phosphorylated by cGMP-dependent protein kinase G through interactions with anchoring proteins, and myosin is a protein kinase G-anchoring protein. A physical interaction between myosin and SERT was apparent; however, defects in sialylated N-glycans impaired association of SERT with myosin as well as the stimulation of the serotonin uptake function in the cGMP-dependent pathway. We propose that sialylated N-glycans provide a favorable conformation to SERT that allows the transporter to function most efficiently via its protein-protein interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3042025PMC
http://dx.doi.org/10.1074/jbc.M306360200DOI Listing

Publication Analysis

Top Keywords

sialylated n-glycans
12
sert
11
glycosyl modification
8
serotonin transporter
8
sialic acid
8
acid residues
8
complex oligosaccharide
8
sert expressed
8
cho cells
8
defects sialylated
8

Similar Publications

Aberrant protein glycosylation is a hallmark alteration of cancer and is highly associated with cancer progression. Papillary thyroid cancer (PTC) is the most common type of thyroid cancer, but the -glycosylation of its glycoproteins has not been well characterized. In this work, we analyzed multiple freshly prepared PTC specimens along with paired normal tissue obtained from thyroidectomies.

View Article and Find Full Text PDF

LC-MS/MS analysis of surface and lysate N-glycans of CHO-K1 cells: Structure, relative quantity, and absolute quantity.

J Chromatogr B Analyt Technol Biomed Life Sci

December 2024

Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea. Electronic address:

Chinese hamster ovary (CHO)-K1 cells are widely used in biomedical research relevant to cancer, toxicity screening, and viruses, as well as in the production of recombinant proteins for biopharmaceuticals. In this study, liquid chromatography (LC)-electrospray ionization (ESI)-higher energy collisional dissociation (HCD)-tandem mass spectrometry (MS/MS) was used to characterize the surface and lysate N-glycans of CHO-K1 cells and analyze their structures. The relative quantity (%) of each N-glycan and absolute quantity (pmol) of total N-glycans were also obtained.

View Article and Find Full Text PDF

Comprehensive site- and structure-specific profiling of N-glycosylation of edible bird's nest (EBN) proteome using label-free quantitative glycoproteomics.

Food Chem

December 2024

Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China. Electronic address:

Glycoproteins, which are involved in numerous biological functions, are among the most critical functional ingredients in an edible bird's nest (EBN). To gain a comprehensive understanding of the glycoprotein species within EBN, a label-free, site-specific glycoproteomic approach was used to analyze their N-glycoproteins, N-glycopeptides, and N-glycans systematically. A total of 127 N-glycoproteins were identified in EBN, of which 72 were found in house-EBN and 63 in cave-EBN, yielding 4195 and 5649 glycopeptides, respectively.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzed glycan biomarkers in serum to understand their relationship with chronic inflammatory demyelinating polyneuropathy (CIDP) and treatment effects.
  • Significant differences were found in N-glycan levels, particularly lower sialylated N-glycans in CIDP patients compared to healthy controls, while O-glycan levels remained unchanged.
  • Lower sialylated N-glycan levels may indicate therapeutic resistance and could serve as a potential biomarker for CIDP’s pathophysiology.
View Article and Find Full Text PDF

MCFD2 and ERGIC-53 form a cargo receptor complex that plays a crucial role in transporting specific glycoproteins, including blood coagulation factor VIII, from the endoplasmic reticulum to the Golgi apparatus. We have demonstrated that MCFD2 recognizes a 10-amino-acid sequence in factor VIII, thereby facilitating its efficient transport. Moreover, the secretion of biopharmaceutical recombinant glycoproteins, such as erythropoietin, can be enhanced by tagging them with this sequence, which we have termed the "passport sequence" (PS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!