Two-dimensional infrared correlation spectroscopy study of sequential events in the heat-induced unfolding and aggregation process of myoglobin.

Biophys J

NMR Laboratory, Department of Biological Sciences and Biotechnology, and State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China.

Published: September 2003

Unfolding and aggregation are basic problems in protein science with serious biotechnological and medical implications. Probing the sequential events occurring during the unfolding and aggregation process and the relationship between unfolding and aggregation is of particular interest. In this study, two-dimensional infrared (2D IR) correlation spectroscopy was used to study the sequential events and starting temperature dependence of Myoglobin (Mb) thermal transitions. Though a two-state model could be obtained from traditional 1D IR spectra, subtle noncooperative conformational changes were observed at low temperatures. Formation of aggregation was observed at a temperature (50-58 degrees C) that protein was dominated by native structures and accompanied with unfolding of native helical structures when a traditional thermal denaturation condition was used. The time course NMR study of Mb incubated at 55 degrees C for 45 h confirmed that an irreversible aggregation process existed. Aggregation was also observed before fully unfolding of the Mb native structure when a relative high starting temperature was used. These findings demonstrated that 2D IR correlation spectroscopy is a powerful tool to study protein aggregation and the protein aggregation process observed depends on the different environmental conditions used.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1303367PMC
http://dx.doi.org/10.1016/S0006-3495(03)74623-2DOI Listing

Publication Analysis

Top Keywords

unfolding aggregation
16
aggregation process
16
correlation spectroscopy
12
sequential events
12
aggregation
9
two-dimensional infrared
8
infrared correlation
8
spectroscopy study
8
study sequential
8
starting temperature
8

Similar Publications

Hemoglobin-derived amyloid fibrils: Fibrillization mechanisms and potential applications.

Food Chem

December 2024

State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.. Electronic address:

Fibrils from food proteins were widely reported but it has not been reported on sus scrofa hemoglobin. Utilizing fibrillization strategies can efficiently utilize hemoglobin and reduce waste. This work explores a new strategy to prepare hemoglobin-derived fibrils by removing the heme group.

View Article and Find Full Text PDF

In this study, a novel acid-induced heat-set soy protein hydrolysate (SPH) gel was successfully developed. The effects of protein (7 and 8 wt%) and glucono-δ-lactone (GDL, 4, 6, 8, and 10 wt%) concentrations on its aggregation and gelation behaviors were investigated by evaluating the structural, rheological, textural, and physical properties of the SPH gel. The structural properties revealed that GDL promoted the formation of SPH aggregates and gels, primarily via disulfide bonds and hydrophobic interactions, which were closely related to the unfolding of the protein structure, exposed hydrophobic groups, decreased protein solubility, and increased particle size and turbidity during the heating process.

View Article and Find Full Text PDF

Excessive oxidation of protein and lipids in pork leads to quality degradation and loss of nutrients. Kappa-selenocarrageenan (Se-K) can not only be used as a selenium enhancer but also as an antioxidant. To explore potential antioxidants that could be applied to pork, the effect of Se-K on myofibrillar protein (MP) and lipid oxidation was investigated.

View Article and Find Full Text PDF

Effects of C-ring structures on the formations of flavonoid semiquinones and their binding behavior with β-lactoglobulin as revealed by experimental and modeling approaches.

Int J Biol Macromol

December 2024

Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, China; College of Life Sciences, Northeast Forestry University, Harbin 150040, China. Electronic address:

The present study investigated the covalent binding behavior of the flavonoids, catechin, eriodictyol, luteolin and quercetin with β-lactoglobulin (βlg). Since the four flavonoids possess the identical A- and B-ring structures, effects of the C-rings on the properties of flavonoids and the corresponding semiquinones are revealed. Experimental methods including DLS and CD spectra indicated that with quercetin at room temperature did not induce aggregation of βlg, whilst binding with the other three flavonoids resulted in aggregation of βlg.

View Article and Find Full Text PDF

Assessing the impact of conformational perturbants on folding and aggregation pathways of a β-barrel fold.

Biochem Biophys Res Commun

December 2024

Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires and Institute of Chemistry and Biological Physical Chemistry (IQUIFIB, UBA-CONICET), Junin 956, 1113, Buenos Aires, Argentina. Electronic address:

Here we explore the interplay between physical and chemical perturbants to unravel links among native folding, amorphous and ordered aggregation scenarios in IFABP (rat intestinal fatty acid binding protein). This small beta-barrel protein undergoes amyloid-like aggregation above 15 % v/v trifluoroethanol. Our aim was to address the influence of sub-aggregating TFE concentrations on the unfolding transitions of IFABP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!