PAP7, a PBR/PKA-RIalpha-associated protein: a new element in the relay of the hormonal induction of steroidogenesis.

J Steroid Biochem Mol Biol

Division of Hormone Research, Department of Cell Biology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, DC 20057, USA.

Published: June 2003

The precise mechanism by which the hormone-induced minimal cAMP levels act at the mitochondria to activate cholesterol transport and steroid synthesis is unknown. We propose that this mechanism involves a macromolecular signaling complex where a newly identified peripheral-type benzodiazepine receptor (PBR)-associated protein (PAP7) binds the regulatory subunit RIalpha of the cAMP-dependent protein kinase A (PKA), thus allowing for local efficient catalytic activation and phosphorylation of the substrate steroidogenesis acute regulatory protein (StAR), leading to cholesterol transfer from the low affinity StAR to the high affinity PBR cholesterol binding protein. The mouse and human PAP7 proteins were cloned, their genomic organization and chromosomal localization characterized, their tissue distribution evaluated and subcellular localization defined. PAP7 is highly expressed in steroidogenic tissues, where it follows the pattern of PKA-RIalpha expression and data from a human adrenal disease suggest that it participates in PKA-RIalpha-mediated tumorigenesis and hormone-independent hypercortisolism. PAP7 is localized in the Golgi and mitochondria and inhibition of PAP7 expression results in reduced hormone-induced cholesterol transport into mitochondria and decreased steroid formation. Taken together, these data suggest that PAP7 functions as an A-kinase anchoring protein (AKAP) critical in the cAMP-dependent steroid formation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0960-0760(03)00213-9DOI Listing

Publication Analysis

Top Keywords

cholesterol transport
8
steroid formation
8
pap7
7
protein
6
pap7 pbr/pka-rialpha-associated
4
pbr/pka-rialpha-associated protein
4
protein element
4
element relay
4
relay hormonal
4
hormonal induction
4

Similar Publications

Cystic Fibrosis (CF) is a life-threatening hereditary disease resulting from mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene that encodes a chloride channel essential for ion transport in epithelial cells. Mutations in CFTR, notably the prevalent F508del mutation, impair chloride transport, severely affecting the respiratory system and leading to recurrent infections. Recent therapeutic advancements include CFTR modulators such as ETI, a combination of two correctors (Elexacaftor and Tezacaftor) and a potentiator (Ivacaftor), that can improve CFTR function in patients with the F508del mutation.

View Article and Find Full Text PDF

Effect of Genetic Variants on Rosuvastatin Pharmacokinetics in Healthy Volunteers: Involvement of , and .

Int J Mol Sci

December 2024

Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), 28006 Madrid, Spain.

Statins are the primary drugs used to prevent cardiovascular disease by inhibiting the HMG-CoA reductase, an enzyme crucial for the synthesis of LDL cholesterol in the liver. A significant number of patients experience adverse drug reactions (ADRs), particularly musculoskeletal problems, which can affect adherence to treatment. Recent clinical guidelines, such as those from the Clinical Pharmacogenetics Implementation Consortium (CPIC) in 2022, recommend adjusting rosuvastatin doses based on genetic variations in the and genes to minimize ADRs and improve treatment efficacy.

View Article and Find Full Text PDF

Macrophages undergo polarization, resulting in distinct phenotypes. These transitions, including de-/repolarization, lead to hysteresis, where cells retain genetic and epigenetic signatures of previous states, influencing macrophage function. We previously identified a set of interferon-stimulated genes (ISGs) associated with high lipid levels in macrophages that exhibited hysteresis following M1 polarization, suggesting potential alterations in lipid metabolism.

View Article and Find Full Text PDF

Coenzyme Q10 (CoQ10) plays a crucial role in facilitating electron transport during oxidative phosphorylation, thus contributing to cellular energy production. Statin treatment causes a decrease in CoQ10 levels in muscle tissue as well as in serum, which may contribute to the musculoskeletal side effects. Therefore, we aimed to assess the effect of newly initiated statin treatment on serum CoQ10 levels after acute ST-elevation myocardial infarction (STEMI) and the correlation of CoQ10 levels with key biomarkers of subclinical or clinically overt myopathy.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD) is linked to choline metabolism. The present study investigated the effect of holy basil ( L.) flower water extract (OSLY) on MASLD with choline metabolism as an underlying mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!