Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Progesterone receptors (PR) are present in two isoforms, PR-A and PR-B. The B-upstream segment (BUS) of PR-B is a 164 amino acid N-terminal extension that is missing in PR-A and is responsible for the functional differences reported between the two isoforms. BUS contains an activation function (AF3) which is defined by a core domain between residues 54-154 whose activity is dependent upon a single Trp residue and two LXXLL motifs. We have also identified sites both within and outside of BUS that repress the strong synergism between AF3 and AF1 in the N-terminal region and AF2 in the hormone binding domain. One of these repressor sites is a consensus binding motif for the small ubiquitin-like modifier protein, SUMO-1 (387IKEE). The DNA binding domain (DBD) structure is also important for function. When BUS is linked to the glucocorticoid receptor DBD, AF3 activity is substantially attenuated, suggesting that binding to a DNA response element results in allosteric communication between the DBD and N-terminal functional regions. Lastly, biochemical and biophysical analyses of highly purified PR-B and PR-A N-terminal regions reveal that they are unstructured unless the DBD is present. Thus, the DBD stabilizes N-terminal structure. We propose a model in which the DBD through DNA binding, and BUS through protein-protein interactions, stabilize active receptor conformers within an ensemble distribution of active and inactive conformational states. This would explain why PR-B are stronger transactivators than PR-A.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0960-0760(03)00197-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!