To examine the potential roles of aquaporins 1 and 5 (AQP1 and AQP5, respectively) in inner ear development and function, we defined their spatial and temporal expression patterns in the developing mouse inner ear and examined the morphologic and physiologic effects of loss of Aqp5 function. Standard in situ hybridization (ISH) and immunohistochemical (IHC) assays were used for expression studies with routine morphologic, behavioral, and physiologic assessments of hearing and balance in Aqp5 null mutant mice. AQP1 was first detected at embryonic day 10.5 (E10.5) in the otocyst but eventually localized to specific nonsensory portions of the inner ear and connective tissue cells surrounding the membranous labyrinth. AQP5 displayed specific cochlear expression, first detectable at E15.5 in the nonsensory epithelium and later restricted to the lateral wall of the cochlear duct near the spiral prominence. AQP5 expression continued through postnatal periods with a change of expression domain to the stria vascularis between postnatal day 7 (P7) and P14. By in situ hybridization and immunohistochemical techniques, subtle differences between transcript and protein expression patterns were noted for both AQP1 and 5. Although AQP5 is dynamically expressed in the developing mouse inner ear, adult Aqp5 knockout mice show normal hearing when tested and normal inner ear structural development. These results suggest redundant or alternative mechanisms that likely regulate water homeostasis in the developing and mature inner ear.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3202717PMC
http://dx.doi.org/10.1007/s10162-002-3033-7DOI Listing

Publication Analysis

Top Keywords

inner ear
28
developing mouse
12
mouse inner
12
aqp5
8
aqp5 null
8
null mutant
8
aqp1 aqp5
8
expression patterns
8
situ hybridization
8
expression
7

Similar Publications

Assembly of actin-based stereocilia is critical for cochlear hair cells to detect sound. To tune their mechanosensivity, stereocilia form bundles composed of graded rows of ascending height, necessitating the precise control of actin polymerization. Myosin 15 (MYO15A) drives hair bundle development by delivering critical proteins to growing stereocilia that regulate actin polymerization via an unknown mechanism.

View Article and Find Full Text PDF

[Application of 3D-Flair MRI and vestibular function assessment in profound sudden sensorineural hearing loss patients].

Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi

January 2025

Department of Otology Medicine, Shandong Provincial ENT Hospital, Shandong University, Jinan250022, China.

To analyse the 3D-Flair MRI manifestations of the inner ear, vestibular function status, and their correlation with hearing treatment outcomes in patients with severe sudden sensorineural hearing loss (SSNHL), and to explore potential prognostic indicators for sudden deafness. The clinical data of adult patients with unilateral profound sudden sensorineural hearing loss were retrospectively analyzed in Otorhinolaryngology Department of Shandong Provincial ENT Hospital from March 2018 to August 2020. Patients were categorized based on the results of their inner ear 3D-Flair MRI into two groups: the normal MRI group and the abnormal MRI group.

View Article and Find Full Text PDF

Purpose: To compare vestibulo-ocular reflex (VOR) gain values, gain symmetry between the semicircular canals (SCCs), and saccadic parameters in patients with a nosological diagnosis of Ménière's disease (MD) and vestibular migraine (VM).

Methods: Observational, descriptive, cross-sectional, retrospective study, approved by the Research Ethics Committee, under evaluation report number 4.462.

View Article and Find Full Text PDF

The cochlea phenotypically differs from the vestibule in the Gfi1 mouse.

Dev Dyn

January 2025

Department of Human Anatomy, College of Basic Medical Sciences, Jilin University, Changchun, China.

Background: Previous studies with Gfi1-mutated lines have shown that Gfi1 is essential for hair cell maturation and survival.

Results: We analyzed the phenotype of another Gfi1-mutated line Gfi1 in the inner ears of neonates at P5-7 and found that the cochlea phenotypically differed from the vestibule in the Gfi1 mouse. Specifically, there was a marked reduction in hair cells in the cochlea, which was characterized by greater reductions in the outer hair cells but far less reductions (mainly in the basal turn) in the inner hair cells, whereas the vestibular hair cells remained unaffected.

View Article and Find Full Text PDF

Background: High-field magnetic resonance imaging (MRI) is a powerful diagnostic tool but can induce unintended physiological effects, such as nystagmus and dizziness, potentially compromising the comfort and safety of individuals undergoing imaging. These effects likely result from the Lorentz force, which arises from the interaction between the MRI's static magnetic field and electrical currents in the inner ear. Yet, the Lorentz force hypothesis fails to explain observed eye movement patterns in healthy adults fully.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!