Fly ash from municipal solid waste incinerators (MSWIs) has been characterized in terms of polychlorinated dibenzyl-p-dioxin and polychlorinated dibenzofuran (PCDD/F) content. Increasing values of PCDD/Fs have been found to correlate with decreasing temperatures of sampling points in flue gas treatment lines of the plants, confirming other researchers' findings about temperature as the major controlling parameter for the PCDD/F formation. Measured PCDD/F ratios show that de novo synthesis is the dominant formation mechanism. The increasing trends of particulate-bound PCDD/Fs can be explained not only through the dominant de novo synthesis process but also considering the adsorption of gaseous PCDD/Fs on fly ash deposits, even outside the typical de novo synthesis temperature ranges. The effective role of a post-combustor unit, imposed by Italian law to destroy PCDD/ Fs, also needs to be carefully reconsidered.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10473289.2003.10466247DOI Listing

Publication Analysis

Top Keywords

fly ash
12
novo synthesis
12
ash municipal
8
municipal solid
8
solid waste
8
waste incinerators
8
generation pcdd/f
4
pcdd/f fly
4
incinerators fly
4
incinerators mswis
4

Similar Publications

Evaluating energy consumption patterns in novel foamed ternary alkali-activated masonry blocks.

Sci Rep

January 2025

Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém H, 8200, Veszprém, Hungary.

This study endeavors to tackle the energy requirements of the building sector by employing passive design strategies. However, there exists a dearth of comprehension regarding the energy efficiency performance of foamed alkali-activated materials. To bridge this research gap, the study proposes a solution in the form of a thermally proficient wall material crafted from ceramic tile dust (CTD), class C fly ash (FA), and Ground Granulated Blast-Furnace Slag (GGBS), all of which are industrial by-products.

View Article and Find Full Text PDF

Green coal and lubricant via hydrogen-free hydrothermal liquefaction of biomass.

Nat Commun

January 2025

Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China.

Biocrude derived from biomass via hydrothermal liquefaction (HTL) is a sustainable substitute for petroleum to obtain energy and biochemicals. Upgrading biocrude inevitably faces the trade-off between consuming large amounts of hydrogen via hydrotreating and high yield of solid residue without additional hydrogen. In this work, we report a non-hydrogenated refinery paradigm for nearly complete valorization (~90%), via co-generating green coal and bio-lubricant.

View Article and Find Full Text PDF

Pro-inflammatory effects of inhaled Great Salt Lake dust particles.

Part Fibre Toxicol

January 2025

Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, 30 S. 2000 E., Room 201 Skaggs Hall, Salt Lake City, UT, 84112, USA.

Background: Climate change and human activities have caused the drying of marine environments around the world. An example is the Great Salt Lake in Utah, USA which is at a near record low water level. Adverse health effects have been associated with exposure to windblown dust originating from dried lakebed sediments, but mechanistic studies evaluating the health effects of these dusts are limited.

View Article and Find Full Text PDF

Proper waste management and sustainable energy production are crucial for human development. For this purpose, this study evaluates the impact of blending percentage on energy recovery potential and environmental benefits of co-combustion of wastewater sludge and Brazilian low-rank coal. The sludge and coal were characterised in terms of their potential as fuel and co-combustion tests were carried out in a pilot-scale bubbling fluidised bed focused on the influence of the percentage of sludge mixture on the behaviour of co-combustion with coal in terms of flue gas composition and fluidised bed temperature stability.

View Article and Find Full Text PDF

The synergistic utilization of multiple solid waste is an effective means of achieving green filling and resource utilization of solid waste in mines. In this paper, the synergistic effects of solid waste granulated blast furnace slag (GS) and carbide slag (CS) as cementitious materials (GCCM) are investigated, along with their preliminary feasibility in combination with coal gangue (CG) and furnace bottom slag (FBS) for the preparation of backfill materials. The synergistic hydration mechanism, mechanical properties, working performance of GCCM and GBC were studied, and the environmental impact and cost-effectiveness of GBC were evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!