Imaging interferometric microscopy.

Opt Lett

Center for High Technology Materials and Department of Physics and Astronomy, University of New Mexico, MSC04 2710, 1313 Goddard SE, Albuquerque, New Mexico 87106, USA.

Published: August 2003

AI Article Synopsis

  • The new imaging interferometric microscopy (IIM) integrates concepts from holography and various imaging techniques to achieve higher resolution images.
  • IIM utilizes a wavelength-division multiplex approach, combining multiple images from different spatial frequencies for enhanced image quality beyond traditional methods.
  • The results show IIM provides high-resolution images comparable to high-NA objectives while retaining the benefits of low-NA objectives, such as longer working distances and larger fields of view.

Article Abstract

We introduce and demonstrate a new microscopy concept: imaging interferometric microscopy (IIM), which is related to holography, synthetic-aperture imaging, and off-axis-dark-field illumination techniques. IIM is a wavelength-division multiplex approach to image formation that combines multiple images covering different spatial-frequency regions to form a composite image with a resolution much greater than that permitted by the same optical system using conventional techniques. This new type of microscopy involves both off-axis coherent illumination and reinjection of appropriate zero-order reference beams. Images demonstrate high resolution, comparable with that of a high-numerical-aperture (NA) objective, while they retain the long working distance, the large depth of field, and the large field of view of a low-NA objective. A Fourier-optics model of IIM is in good agreement with the experiment.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ol.28.001424DOI Listing

Publication Analysis

Top Keywords

imaging interferometric
8
interferometric microscopy
8
microscopy
4
microscopy introduce
4
introduce demonstrate
4
demonstrate microscopy
4
microscopy concept
4
concept imaging
4
microscopy iim
4
iim holography
4

Similar Publications

Dynamic Interferometry for Freeform Surface Measurement Based on Machine Learning-Configured Deformable Mirror.

Sensors (Basel)

January 2025

Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China.

Optical freeform surfaces are widely used in imaging and non-imaging systems due to their high design freedom. In freeform surface manufacturing and assembly, dynamic freeform surface measurement that can guide the next operation remains a challenge. To meet this urgent need, we propose a dynamic interferometric method based on a machine learning-configured deformable mirror (DM).

View Article and Find Full Text PDF

Imaging cells and nanoparticles using modulated optically computed phase microscopy.

Sci Rep

January 2025

Department of Chemistry & Environmental Science, Jordan Hu College of Science and Liberal Arts, New Jersey Institute of Technology, Newark, NJ, 07102, USA.

Nanoparticles (NPs) have been successfully used as drug delivery systems. To develop and optimize NP-based drug delivery systems, it is essential to understand the dynamics of cell-NP interactions. Quantitative phase imaging techniques enable label-free imaging and have the potential to reveal how cells interact with NPs.

View Article and Find Full Text PDF

Significance: Imaging flow cytometry allows highly informative multi-point cell analysis for biological assays and medical diagnosis. Rapid processing of the imaged cells during flow allows real-time classification and sorting of the cells. Off-axis holography enables imaging flow cytometry without chemical cell staining but requires digital processing to the optical path delay profile for each frame before the cells can be classified, which slows down the overall processing throughput.

View Article and Find Full Text PDF

Variations in Ciliary Beat Frequency Based on Chronic Rhinosinusitis Endotype and Phenotype.

Ann Allergy Asthma Immunol

January 2025

Beckman Laser Institute & Medical Clinic, University of California, Irvine, CA 92612, USA; Department of Otolaryngology - Head and Neck Surgery, University of California - Irvine, School of Medicine, Orange, CA 92868, USA; Department of Biomedical Engineering, University of California - Irvine, Irvine, CA 92697, USA. Electronic address:

Background: Chronic rhinosinusitis (CRS) is traditionally classified into CRS with or without nasal polyps and more recently into eosinophilic and non-eosinophilic endotypes. Limited research exists on the relationship between CRS subtype and mucociliary function. This study compares ciliary beat frequency (CBF) across CRS subtypes.

View Article and Find Full Text PDF

Transmission electron microscopy, especially at cryogenic temperature, is largely used for studying biological macromolecular complexes. A main difficulty of TEM imaging of biological samples is the weak amplitude contrasts due to electron diffusion on light elements that compose biological organisms. Achieving high-resolution reconstructions implies therefore the acquisition of a huge number of TEM micrographs followed by a time-consuming image analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!