An increasing body of evidence suggests that the muscarinic receptors may present a potential therapeutic target for the treatment of schizophrenia. This argument is supported by studies using postmortem CNS tissue and a neuroimaging study that have shown there are regionally specific decreases in selective muscarinic receptors in the CNS of subjects with schizophrenia. This raises the possibility that drugs specific to individual muscarinic receptors could have beneficial effects on the symptoms of schizophrenia, a posit supported by studies in receptor knockout/knockdown mice where it has been shown that specific behaviours affected by schizophrenia are also abnormal in mice lacking a single muscarinic receptor. Moreover, drugs have been synthesised that are partial agonists at muscarinic receptors and these drugs have been shown to improve the behavioural deficits in humans which are modulated by the muscarinic receptor family. The widespread distribution of muscarinic receptors in the human CNS and the receptor specific changes identified in postmortem CNS from subjects with schizophrenia would suggest that drugs targeting specific muscarinic receptors would also need to partition into selected CNS regions to achieve optimal responses. Some existing compounds show regional selectivity for the same muscarinic receptor in different CNS regions, suggesting that this characteristic could be engineered into muscarinic receptor targeting drugs. This review presents data from diverse areas of research to argue that it is now imperative that the therapeutic potential of manipulating the activity of muscarinic receptors for the treatment of schizophrenia is fully explored.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1566524033479654 | DOI Listing |
J Vet Res
December 2024
Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, 10-748 Olsztyn, Poland.
Introduction: Endometritis is a very common pathology in animals which changes endometrial leukotriene (LT) formation and muscarinic 2 and 3 receptor subtypes (M2R/M3R) and α-7 nicotinic acetylcholine (ACh) receptor (α-7 nAChR) expression patterns. With the relationship between ACh, its receptors and LT production remaining unclear, the role of M2R, M3R and α-7 nAChR in action of ACh on the 5-lipoxygenase (5-LO), LTA4 hydrolase (LTAH) and LTC4 synthase (LTCS) protein abundances in the inflamed porcine endometrium and on the tissue secretion of LTB4 and LTC4 were studied.
Material And Methods: On day three of the oestrous cycle in gilts aged 7-8 months, 50 mL of either saline solution (control group, n = 5) or an suspension at 10 colony-forming units/mL ( group, n = 5), was injected into each uterine horn.
Biomolecules
December 2024
Institute of Pharmacology and Clinical Pharmacy, Biochemical Pharmaceutical Center (BPC) Marburg, University of Marburg, 35043 Marburg, Germany.
G protein-coupled receptors (GPCRs) regulate multiple cellular functions and represent important drug targets. More than 20 years ago, it was noted that GPCR activation (agonist binding) and signaling (G protein activation) are dependent on the membrane potential (V). While it is now proven that many GPCRs display an intrinsic voltage dependence, the molecular mechanisms of how GPCRs sense depolarization of the plasma membrane are less well defined.
View Article and Find Full Text PDFFront Chem
December 2024
Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
Ethnopharmacological Relevance: In Moroccan traditional medicine, plants from the Apiaceae family are widely utilized in folk medicine to treat various diseases associated with the digestive system. plays an important role as an antispasmodic that has been traditionally used, especially to treat digestive tract diseases in children.
Aim Of The Study: The aim of this research was to verify the traditional use by assessing the relaxant and spasmolytic activities of essential oil (ALEO) and then comparing them to the effects and potency of the major constituent of ALEO, which is perillaldehyde.
MicroPubl Biol
December 2024
Laboratory of Physiology, Department of Medicine, University of Patras, Pátrai, West Greece, Greece.
Cholinergic transmission fundamentally modulates information processing in the brain via muscarinic receptors. Using electrophysiological recordings of population spikes from the CA1 region, we found that the muscarinic receptor agonist carbachol (CCh, 1 μM) enhances the basal excitation level in the dorsal but not ventral hippocampus. Using a frequency stimulation protocol, we found that CCh transforms depression of neuronal output into facilitation (at 3-30 Hz) in the ventral hippocampus while only lessening depression in the dorsal hippocampus, suggesting that muscarinic transmission boosts basal neuronal activation in the dorsal hippocampus and strongly facilitates the output of the ventral hippocampus in a frequency-dependent manner.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!