A new model of human centrifugation machine with clinical purposes which makes possible to stimulate endogenous prostaglandin synthesis by a mechanical stimulus over the vessel walls is presented. The different therapeutical applications of this machine were demonstrated in lymphedema, peripheral obstructive arteriopathies, reflex sympathetic dystrophy syndrome, diabetic background retinopathy and coronary artery disease.

Download full-text PDF

Source

Publication Analysis

Top Keywords

human centrifugation
8
centrifugation machine
8
endogenous prostaglandin
8
prostaglandin synthesis
8
machine physiological
4
physiological stimulator
4
stimulator endogenous
4
synthesis model
4
model human
4
machine clinical
4

Similar Publications

Purpose: Outer membrane vesicles (OMVs) derived from Gram-negative bacteria naturally serve as a heterologous nano-engineering platform, functioning as effective multi-use nanovesicles for diagnostics, vaccines, and treatments against pathogens. To apply refined OMVs for human theranostic applications, we developed naturally exposed receptor-binding domain (RBD) OMVs grafted with antigen 43 as a minimal modular system targeting angiotensin-converting enzyme 2 (ACE2).

Methods: We constructed -derived OMVs using the antigen 43 autotransporter system to display RBD referred to as viral mimetic Ag43β700_RBD OMVs.

View Article and Find Full Text PDF

Mitochondria play a fundamental role in energy metabolism, particularly in high-energy-demand tissues such as skeletal muscle. Understanding the proteomic composition of mitochondria in these cells is crucial for elucidating the mechanisms underlying muscle physiology and pathology. However, effective isolation of mitochondria from primary human skeletal muscle cells has been challenging due to the complex cellular architecture and the propensity for contamination with other organelles.

View Article and Find Full Text PDF

Subtractive Inhibition Assay Based on PagN-Specific Monoclonal Antibody for the Detection of Salmonella Using Surface Plasmon Resonance.

Biotechnol J

January 2025

Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China.

Salmonella is a common foodborne zoonotic pathogen that poses a great threat to human health and breeding industry. The rapid detection of Salmonella is necessary for early prevention and control. In this study, a subtractive inhibition assay (SIA) based on surface plasmon resonance (SPR) for the rapid detection of Salmonella was developed.

View Article and Find Full Text PDF

Comparative effects of various extracellular vesicle subpopulations derived from clonal mesenchymal stromal cells on cultured fibroblasts in wound healing-related process.

Int J Biochem Cell Biol

January 2025

Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. Electronic address:

Introduction: Non-healing wounds pose significant challenges and require effective therapeutic interventions. Extracellular vesicles (EVs) have emerged as promising cell-free therapeutic agents in tissue regeneration. However, the functional differences between different subpopulations of EVs in wound healing remain understudied.

View Article and Find Full Text PDF

Engineering 3D microtip gates of all-polymer organic electrochemical transistors for rapid femtomolar nucleic-acid-based saliva testing.

Biosens Bioelectron

January 2025

School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, PR China. Electronic address:

Point-of-care testing (POCT) of trace amount of biomarkers in biofluids is critical towards health monitoring and early diagnosis. In particular, to facilitate non-invasive saliva testing, the development of low-cost, lightweight and disposable biosensors is in urgent need, while the ultrahigh sensitivity beyond conventional clinical tests remains a great challenge. Herein, we demonstrate a simple and fully printable all-polymer organic electrochemical transistor (OECT) biosensor to detect femtomolar (fM)-level biomolecules in saliva within a few minutes by employing highly conducting lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)-doped poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) serving as both the channel and gate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!