Sur domains that associate with and gate KATP pores define a novel gatekeeper.

J Biol Chem

Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza 112C, Houston, TX 77030, USA.

Published: October 2003

Structure-function analyses of K+ channels identify a common pore architecture whose gating depends on diverse signal sensing elements. The "gatekeepers" of the long, ATP-inhibited KIR6.0 pores of KATP channels are ABC proteins, SURs, receptors for channel opening and closing drugs. Several competing models for SUR/KIR coupling exist. We show that SUR TMD0, the N-terminal bundle of five transmembrane helices, specifically associates with KIR6.2, forcing nearly silent pores to burst like native KATP channels and enhancing surface expression. Inclusion of adjacent submembrane residues of L0, the linker between TMD0 and the stimulatory nucleotide- and drug-binding ABC core, generates constitutively active channels, whereas additional cytoplasmic residues counterbalance this activation establishing a relationship between the mean open and burst times of intact pores. SUR fragments, lacking TMD0, fail to modulate KIR. TMD0 is thus the domain that anchors SUR to the KIR pore. Consistent with data on chimeric ABCC/KIRs and a modeled channel structure, we propose that interactions of TMD0-L0 with the outer helix and N terminus of KIR bidirectionally modulate gating. The results explain and predict pathologies associated with alteration of the 5' ends of clustered ABCC8 (9)/KCNJ11 (8) genes.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.C300363200DOI Listing

Publication Analysis

Top Keywords

katp channels
8
sur
4
sur domains
4
domains associate
4
associate gate
4
gate katp
4
pores
4
katp pores
4
pores define
4
define novel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!