Stimulation of cardiomyocyte guanosine 3',5'-cyclic monophosphate (cyclic GMP) via endothelial-derived nitric oxide (NO) is an important mechanism by which bradykinin and ACE inhibitors prevent hypertrophy. Endothelial NO dysfunction and cardiac hypertrophy are morbid features of diabetes not entirely prevented by ACE inhibitors. In cardiomyocyte/endothelial cell cocultures, bradykinin efficacy is abolished by high-glucose-induced endothelial NO dysfunction. We now demonstrate that antihypertrophic actions of natriuretic peptides, which stimulate cyclic GMP independently of NO, are preserved in cardiomyocytes despite high-glucose-induced endothelial dysfunction. Further, streptozotocin-induced diabetes significantly impairs the effectiveness of acute antihypertrophic strategies in isolated rat hearts. In hearts from citrate-treated control rats, angiotensin II-stimulated [(3)H]phenylalanine incorporation and atrial natriuretic peptide and beta-myosin heavy chain mRNA expression were prevented by B-type natriuretic peptide (BNP), bradykinin, the ACE inhibitor ramiprilat, and the neutral endopeptidase inhibitor candoxatrilat. These antihypertrophic effects were accompanied by increased left ventricular cyclic GMP. In age-matched diabetic hearts, the antihypertrophic and cyclic GMP stimulatory actions of bradykinin, ramiprilat, and candoxatrilat were absent. However, the blunting of hypertrophic markers and accompanying increases in cyclic GMP stimulated by BNP were preserved in diabetes. Thus BNP, which increases cyclic GMP independently of NO, is an important approach to prevent growth in the diabetic myocardium, where endothelium-dependent mechanisms are compromised.

Download full-text PDF

Source
http://dx.doi.org/10.2337/diabetes.52.9.2389DOI Listing

Publication Analysis

Top Keywords

cyclic gmp
28
natriuretic peptide
12
endothelial dysfunction
12
b-type natriuretic
8
bradykinin ace
8
ace inhibitors
8
high-glucose-induced endothelial
8
gmp independently
8
increases cyclic
8
cyclic
7

Similar Publications

ArgR regulates motility and virulence through positive control of flagellar genes and inhibition of diguanylate cyclase expression in Aeromonas veronii.

Commun Biol

December 2024

Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.

Flagella are essential for biofilm formation, adhesion, virulence, and motility. In this study, the deletion of argR resulted in defects in flagellar synthesis and reduced motility, nevertheless, the underlying mechanism by which ArgR regulated bacterial motility remained unclear. ChIP-Seq and RNA-Seq analysis revealed that ArgR regulated the expression of flagellar genes, concluding two-component system flrBC and multitudinous flagellar structure genes.

View Article and Find Full Text PDF

Cone cGMP-phosphodiesterase (PDE6) is the key effector enzyme for daylight vision, and its properties are critical for shaping distinct physiology of cone photoreceptors. We determined the structures of human cone PDE6C in various liganded states by single-particle cryo-EM that reveal essential functional dynamics and adaptations of the enzyme. Our analysis exposed the dynamic nature of PDE6C association with its regulatory γ-subunit (Pγ) which allows openings of the catalytic pocket in the absence of phototransduction signaling, thereby controlling photoreceptor noise and sensitivity.

View Article and Find Full Text PDF

Salivary adenoid cystic carcinoma (SACC) is an intractable malignant tumor originates in the secretory glands and frequently metastasizes to the lungs. Hybrid epithelial-mesenchymal transition (EMT) cells within the tumors are correlated with augmented proliferative capacity and facilitation of lung metastasis. Single-cell RNA sequencing and spatial transcriptomic sequencing are employed to reveal the hybrid EMT subsets within the vascular fibroblast microenvironment.

View Article and Find Full Text PDF

Oxidative stress mediates retinal damage after corneal alkali burn through the activation of the cGAS/STING pathway.

Exp Eye Res

December 2024

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China. Electronic address:

Retinal damage accounts for irreversible vision loss following ocular alkali burn (OAB), but the underlying mechanisms remain largely unexplored. Herein, using an OAB mouse model, we examined the impact of oxidative stress (OS) in retinal damage and its molecular mechanism. Results revealed that OS in the retina was enhanced soon after alkali injury.

View Article and Find Full Text PDF

The cyclic GMP-AMP synthase-stimulator of the interferon gene (cGAS-STING) signaling pathway is considered an essential pattern recognition and effector pathway in the natural immune system and is mainly responsible for recognizing DNA molecules present in the cytoplasm and activating downstream signaling pathways to generate type I interferons (IFN-I) and other inflammatory factors. STING, a crucial junction protein in the innate immune system, exerts an essential role in host resistance to external pathogen invasion. The DNA introduced by pathogens or tumors is recognized by the cytoplasmic nucleic acid receptor cGAS, and a second messenger, cGAMP, is generated using intracellular guanosine triphosphate (GTP) and adenosine triphosphate (ATP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!