Differential expression of the immediate early genes FOS and ZENK following auditory stimulation in the juvenile male and female zebra finch.

Brain Res Mol Brain Res

Department of Psychology, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, USA.

Published: August 2003

The brains of adult zebra finches (Taeniopygia guttata) are tuned to the songs of conspecifics. In adult males, the caudomedial neostriatum (NCM) responds to zebra finch song, and in adult females the NCM and hippocampus (HP) are active following exposure to zebra finch song more than other auditory stimuli. The caudal hyperstriatum ventrale (cHV) in both sexes also responds to song, but in females not as selectively as the NCM and HP. While much is known about the adult perceptual circuit, less is known about its development. The present study exposed d30 male and female zebra finches to conspecific or heterospecific song, tones or silence, and examined the densities of FOS- and ZENK-immunoreactive nuclei in the NCM, cHV and HP. Significant interactions existed between sex and auditory stimulus condition for both immediate early genes, but they were in opposite directions. That is, across the three regions, FOS-immunoreactive neurons were increased in females following presentation of conspecific songs; males did not show an effect of stimulus exposure. In contrast, the density of ZENK-positive neurons was increased in males, but not females, following zebra finch song exposure. The FOS results demonstrate that some neural responses required for song perception may develop earlier in females than males; data on ZENK induction suggest the opposite. Overall, differences in juvenile immediate early gene activation suggest either that males and females employ divergent neural mechanisms for song perception or that the developmental trajectories leading to common neural responses differ.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0169-328x(03)00288-2DOI Listing

Publication Analysis

Top Keywords

zebra finch
16
finch song
12
early genes
8
male female
8
female zebra
8
zebra finches
8
neurons increased
8
males females
8
neural responses
8
song perception
8

Similar Publications

Despite the wide use of zebra finches as an animal model to study vocal learning and production, little is known about impacts on their welfare caused by routine experimental manipulations such as changing their social context. Here we conduct a post-hoc analysis of singing rate, an indicator of positive welfare, to gain insights into stress caused by social isolation, a common experimental manipulation. We find that isolation in an unfamiliar environment reduces singing rate for several days, indicating the presence of an acute stressor.

View Article and Find Full Text PDF

Social and sensory experiences across the lifespan can shape social interactions, however, experiencedependent plasticity is widely studied within discrete life stages. In the socially monogamous zebra finch, in which females use learned vocal signals to identify individuals and form long-lasting pair bonds, developmental exposure to song is key for females to show species-typical song perception and preferences. While adult mating experience can still lead to pair-bonding and song preference learning even in birds with limited previous song exposure ("song-naïve"), whether similarities in adult behavioral plasticity between normally-reared and song-naïve females reflect convergent patterns of neural activity is unknown.

View Article and Find Full Text PDF

Noise pollution is on the rise worldwide. An unresolved issue regarding the mitigation of noise pollution is whether and at which timescales animals may adapt to noise pollution. Here, we tested whether continuous highway noise exposure perinatally and during juvenile development increased noise tolerance in a songbird, the zebra finch ().

View Article and Find Full Text PDF

: Transcriptome assembly and functional annotation are essential in understanding gene expression and biological function. Nevertheless, many existing pipelines lack the flexibility to integrate both short- and long-read sequencing data or fail to provide a complete, customizable workflow for transcriptome analysis, particularly for non-model organisms. : We present TrAnnoScope, a transcriptome analysis pipeline designed to process Illumina short-read and PacBio long-read data.

View Article and Find Full Text PDF

Offspring of older breeders frequently show reduced longevity, which has been linked to shorter offspring telomere length. It is currently unknown whether such telomere reduction persists beyond a single generation, as would be the case if germline transmission is involved. In a within-grandmother, multi-generational study using zebra finches, we show that the shorter telomeres observed in F1 offspring of older mothers are still present in the F2 generation even when the breeding age of their F1 mothers is young.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!