In vitro and in vivo protective effect of Ganoderma lucidum polysaccharides on alloxan-induced pancreatic islets damage.

Life Sci

Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100083, PR China.

Published: September 2003

This study was undertaken to investigate the protective effect against alloxan-induced pancreatic islets damage by Ganoderma lucidum Polysaccharides (Gl-PS) isolated from the fruiting body of Ganoderma lucidum (Leyss. ex Fr.) Karst. In vitro, alloxan caused dose-dependent toxicity on the isolated pancreatic islets. Pre-treatment of islets with Gl-PS for 12 h and 24 h significantly reversed alloxan-induced islets viability loss. Gl-PS was also found to inhibit the free radicals production induced by alloxan in the isolated pancreatic islets using confocal microscopy. Gl-PS dose-dependently increased serum insulin and reduced serum glucose levels when pretreated intragastrically for 10 days in alloxan-induced diabetic mice. It was found that the pancreas homogenates had higher lipid peroxidation products in alloxan-treated mice than in the Gl-PS-treated animals. Aldehyde fuchsin staining revealed that alloxan caused nearly all the beta cells disappearing from the pancreatic islets, while Gl-PS partly protected the beta cells from necrosis. Alloxan (60 mg/kg) induced NF-kappa B activation in the pancreas at 30 min after injection, pretreatment with Gl-PS inhibited alloxan-induced activation of NF-kappa B. These results suggest that Gl-PS was useful in protecting against alloxan-induced pancreatic islets damage in vitro and in vivo; one of the mechanisms is through its scavenging ability to protect the pancreatic islets from free radicals-damage induced by alloxan.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0024-3205(03)00594-0DOI Listing

Publication Analysis

Top Keywords

pancreatic islets
28
ganoderma lucidum
12
alloxan-induced pancreatic
12
islets damage
12
islets
9
vitro vivo
8
lucidum polysaccharides
8
alloxan caused
8
isolated pancreatic
8
islets gl-ps
8

Similar Publications

Although islet transplantation is effective in reducing severe hypoglycemia events and controlling blood glucose in patients with type 1 diabetes, maintaining islet graft function long-term is a significant challenge. Islets from multiple donors are often needed to achieve insulin independence, and even then, islet function can decline over time when metabolic demand exceeds islet mass/insulin secretory capacity. We previously developed a method that calculated the islet graft function index (GFI) and a patient's predicted insulin requirement (PIR) using mathematical nonlinear regression.

View Article and Find Full Text PDF

Compared to primary pancreatic islets, insulinoma cell-derived 3D pseudoislets offer a more accessible, consistent, renewable, and widely applicable model system for optimization and mechanistic studies in type 1 diabetes (T1D). Here, we report a simple and efficient method for generating 3D pseudoislets from MIN6 and NIT-1 murine insulinoma cells. These pseudoislets are homogeneous in size and morphology (~150 µm), exhibit functional glucose-stimulated insulin secretion (GSIS) up to 18 days (NIT-1) enabling long-term studies, are produced in high yield [>35,000 Islet Equivalence from 30 ml culture], and are suitable for both and studies, including for encapsulation studies.

View Article and Find Full Text PDF

The hypoglycemic effects of nateglinide (NTG) were examined in rats with acute peripheral inflammation (API) induced by carrageenan treatment, and the mechanisms accounting for altered hypoglycemic effects were investigated. NTG was administered through the femoral vein in control and API rats, and its plasma concentration profile was characterized. The time courses of the changes in plasma glucose and insulin levels were also examined.

View Article and Find Full Text PDF

Updates in the Management of Chronic Pancreatitis: Navigating Through Recent Advances.

Gastroenterol Clin North Am

March 2025

Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota, 420 Delaware Street Southeast, Minneapolis, MN 55455, USA. Electronic address:

This article provides an up-to-date review of the management of chronic pancreatitis, highlighting advancements in medical therapy, nutritional support, endoscopic and surgical approaches, and emerging treatments. Nutritional management accentuates addressing malabsorption and nutrient deficiencies. Advances in endoscopy and parenchyma-sparing surgical techniques have opened new avenues for improved patient outcomes, with total pancreatectomy and islet autotransplantation offering the only definitive solution for selected patients.

View Article and Find Full Text PDF

Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by the loss of insulin-producing cells in the pancreatic islets. Patients with T1D have autoreactive CD4 and CD8 T cells that show specific features, indicating previous exposure to self-antigens. Despite that memory T cells are vital components of the adaptive immune system, providing enduring protection against pathogens; individuals with T1D have a higher proportion of memory T cells compared to healthy individuals with naїve phenotypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!