Complex glycophosphosphingolipids present in plants are composed of ceramide, inositolphosphate, and diverse polar oligosaccharide substituents. The activity of inositolphosphorylceramide (IPC) synthase (phosphatidylinositol:ceramide inositolphosphate transferase), the enzyme proposed to catalyze the initial committed step in the formation of these complex sphingolipids, was characterized in wax bean hypocotyl microsomes. Enzyme activity was assayed by monitoring the incorporation of fluorescent NBD-C(6) ceramide or [3H]inositolphosphate from radiolabeled phosphatidylinositol (PI) into product identified by TLC. IPC synthase was found to utilize nonhydroxy fatty acid-containing ceramide, hydroxy fatty acid-containing ceramide, and NBD-C(6) ceramide as substrate. Maximum product formation was observed at PI concentrations in excess of 600 microM (with half-maximum activity at approximately 200 microM). Both endogenous PI and ceramide appeared to serve as substrates. Aureobasidin A and rustmicin, two potent inhibitors of fungal IPC synthase, inhibited enzyme activity in bean microsomes with values for IC(50) of 0.4-0.8 and 16-20 nM, respectively. IPC synthase activity appeared most closely associated with the Golgi based on results using selected marker enzymes. Enzyme activity was detected in a variety of plant tissues. This report, the first to characterize IPC synthase in plant tissues, demonstrates the similarities between the plant enzyme and its yeast counterpart, and provides insight into plant glycophosphosphingolipid biology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0003-9861(03)00339-4 | DOI Listing |
mBio
December 2024
Department of Microbiology & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA.
Unlabelled: The protozoan parasite is the only known eukaryote capable of synthesizing the three main phosphosphingolipids: sphingomyelin (SM), inositol phosphorylceramide (IPC), and ethanolamine phosphorylceramide (EPC). It has four paralogous genes encoding sphingolipid synthases (). TbSLS1 is a dedicated IPC synthase, TbSLS2 is a dedicated EPC synthase, and TbSLS3 and TbSLS4 are bifunctional SM/EPC synthases.
View Article and Find Full Text PDFMol Biochem Parasitol
December 2024
Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 955 Main Street, Buffalo, NY 14203, United States. Electronic address:
Phosphosphingolipids (PSL) are essential components of eukaryotic membranes. The major PSL in fungi and protists is inositol phosphorylceramide (IPC), while sphingomyelin (SM), and to a lesser extent ethanolamine phosphorylceramide (EPC) predominate in mammals. Most kinetoplastid protozoa have a syntenic locus that encodes a single sphingolipid synthase (SLS) gene.
View Article and Find Full Text PDFiScience
September 2024
Division of Molecular Infection Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany.
is a professional phagocyte frequently used to study cellular processes underlying the recognition, engulfment, and infection course of microbial pathogens. Sphingolipids are abundant components of the plasma membrane that bind cholesterol, control membrane properties, participate in signal transmission, and serve as adhesion molecules in recognition processes relevant to immunity and infection. By combining lipidomics with a bioinformatics-based cloning strategy, we show here that produces phosphoinositol-containing sphingolipids with predominantly phytoceramide backbones.
View Article and Find Full Text PDFACS Infect Dis
August 2024
Department of Biosciences, University of Durham, South Road, Durham, DH1 3LE, U.K.
PLoS Negl Trop Dis
September 2023
Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
Sphingolipids (SLs) are essential components of all eukaryotic cellular membranes. In fungi, plants and many protozoa, the primary SL is inositol-phosphorylceramide (IPC). Trypanosoma cruzi is a protozoan parasite that causes Chagas disease (CD), a chronic illness for which no vaccines or effective treatments are available.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!