In early starvation tissue protein degradation increases, however in later starvation proteolysis declines so as to pace gradual atrophy during synthetic failure. Secondary decline of proteolytic pathways under progressive nutritional desperation is unexplained. After several days of starvation tissue GSH is partly depleted and GSSG/GSH is increased, followed by onset of ketonemia from fat breakdown. Ketone bodies inexplicably delay net muscle protein loss. Recent studies identify a proteome subset of more than 200 proteins with reactive sulfhydryl sites as candidates for coordinate redox control of diverse cell functions. Ketones cause protein sulfhydryl oxidation and protein S-glutathionylation. Here, redox-responsive proteolytic pathways were bio-assayed by release of [3H]leucine from rat myocardium under non-recirculating perfusion. More than 75% of myocardial protein degradation was inhibited and defined by infusion of diamide (100 microM) under constant physiologic concentrations of complete amino acids. Diamide-inhibitable proteolysis includes all lysosomal and some extra-lysosomal proteolysis. Following diamide washout, the reversal of proteolytic inhibitory action was greatly enhanced by artificial repletion of GSH by supra-physiologic extra-cellular GSH (1mM) exposure. Therefore, GSH maintains much of constitutive protein degradation in a primary tissue bioassay. Physiologic acetoacetate infusion (5mM) inhibited redox-responsive protein degradation. Uniformly [3H]leucine labeled 3T3 cells exhibited similar redox-dependent and redox-independent subcomponents of protein degradation. Independent of ketones, steady state cathepsin B reaction rate ex vivo was graded in proportion to the GSH concentration without GSSG, and inversely proportional to the GSSG/GSH redox ratio with inhibitory threshold at 0.5% oxidized. Linkage of some cysteine protease reaction rates to the interplay between GSH-GSSG/GSH status and ketonemia is suggested among transcendent mechanisms coordinating and pacing proteome turnover under prolonged starvation. The possibility of pre-emptive, redox coordination of distinct proteolytic pathways is speculatively discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0003-9861(03)00367-9 | DOI Listing |
Cell Mol Life Sci
January 2025
Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Valdeolmos, Madrid, Spain.
Cyclic GMP-AMP synthase (cGAS) is a DNA sensing cellular receptor that induces IFN-I transcription in response to pathogen and host derived cytosolic DNA and can limit the replication of some RNA viruses. Some viruses have nonetheless evolved mechanisms to antagonize cGAS sensing. In this study, we evaluated the interaction between Bluetongue virus (BTV), the prototypical dsRNA virus of the Orbivirus genus and the Sedoreoviridae family, and cGAS.
View Article and Find Full Text PDFmBio
January 2025
Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan.
The human cellular cytidine deaminases APOBEC3s (A3s) inhibit virion infectivity factor (Vif)-deficient HIV-1 replication. However, virus-encoded Vifs abolish this defense system by specifically recruiting A3s to an E3 ubiquitin ligase complex to induce their degradation. The highly conserved Vif PPLP motif is critical for the Vif-mediated antagonism of A3s and is believed to be important for Vif multimerization.
View Article and Find Full Text PDFMol Carcinog
January 2025
Department of Gastrointestinal Oncology, Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China.
Gastric cancer is a common digestive system tumor with a high resistance rate that reduces the sensitivity to chemotherapy. Nutrition therapy is an important adjuvant approach to favor the prognosis of gastric cancer. Dietary amino acids contribute greatly to gastric cancer progression by mediating tumor gene expressions, epigenetics, signal transduction, and metabolic remodeling.
View Article and Find Full Text PDFInt J Rheum Dis
January 2025
Department of Orthopaedics, Shaanxi Rehbilitation Hospital, Xi'an, Shaanxi, China.
Background: Osteoarthritis (OA) is one of the most common bone disorders and has a serious impact on the quality of life of patients. LncRNA-HCP5 (HCP5) is downregulated in OA tissues. However, the latent function and regulatory mechanisms of HCP5 in OA are unclear.
View Article and Find Full Text PDFInt J Rheum Dis
January 2025
Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, Minda Hospital of Hubei Minzu University, Enshi, China.
Osteoarthritis is a systemic disease that primarily damages articular cartilage and also affects the synovium, ligaments, and bone tissues. The key mechanisms involved are chondrocyte death and degradation of the extracellular matrix. This study aims to identify differentially expressed genes (DEGs) associated with ferroptosis and investigate their roles in the development of osteoarthritis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!