The paper establishes the relationship between the settling efficiency and the sizes of the sedimentation tank through the process of numerical simulation, which is taken as one of the constraints to set up a simple optimum designing model of sedimentation tank. The feasibility and advantages of this model based on numerical calculation are verified through the application of practical case.

Download full-text PDF

Source

Publication Analysis

Top Keywords

numerical simulation
8
sedimentation tank
8
application numerical
4
simulation optimum
4
optimum design
4
design two-dimensional
4
two-dimensional sedimentation
4
sedimentation tanks
4
tanks wastewater
4
wastewater treatment
4

Similar Publications

Discovering non-associated pressure-sensitive plasticity models with EUCLID.

Adv Model Simul Eng Sci

January 2025

Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zürich, Zürich, 8092 Switzerland.

We extend (EUCLID Efficient Unsupervised Constitutive Law Identification and Discovery)-a data-driven framework for automated material model discovery-to pressure-sensitive plasticity models, encompassing arbitrarily shaped yield surfaces with convexity constraints and non-associated flow rules. The method only requires full-field displacement and boundary force data from one single experiment and delivers constitutive laws as interpretable mathematical expressions. We construct a material model library for pressure-sensitive plasticity models with non-associated flow rules in four steps: (1) a Fourier series describes an arbitrary yield surface shape in the deviatoric stress plane; (2) a pressure-sensitive term in the yield function defines the shape of the shear failure surface and determines plastic deformation under tension; (3) a compression cap term determines plastic deformation under compression; (4) a non-associated flow rule may be adopted to avoid the excessive dilatancy induced by plastic deformations.

View Article and Find Full Text PDF

Introduction: Validated models describing the biomechanics of tooth extraction are scarce. This study seeks to perform experimental and numerical characterization of vertical tooth extraction biomechanics in swine incisors with imposed vertical extraction loads. Imaging analysis related mechanical outcomes to tooth geometry and applied loading rate.

View Article and Find Full Text PDF

The exact mechanisms behind population cycles remain elusive. An ongoing debate centers on whether predation by small mustelids is necessary and sufficient to generate rodent cycles, as stipulated by the specialist predator hypothesis (SPH). Specifically, the SPH predicts that the predator should respond numerically to the abundance of its prey with a delay of approximately one year, leading to delayed density-dependence in the dynamics of the prey population.

View Article and Find Full Text PDF

Background: Pediatric obesity is a growing global health challenge, with long-term implications for individuals and healthcare systems. Existing studies on the association between pediatric obesity and healthcare use in adulthood are limited and often rely on mathematical simulation models. This study aims to provide real-world data on the impact of adolescent obesity on specialized healthcare utilization and costs in early adulthood.

View Article and Find Full Text PDF

Simulation of a liquid drop on a soft substrate.

Eur Phys J E Soft Matter

January 2025

Department of Fundamental Physics, Faculty of Physics, Alzahra University, Tehran, 1993891167, Iran.

A liquid drop resting on a soft substrate is numerically simulated as an energy minimization problem. The elastic substrate is modeled as a cubic lattice of mass-springs, to which an energy term controlling the change of volume is associated. The interfacial energy between three phases of solid, liquid, and vapor is also introduced.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!