The new ligand vanillin S-benzyldithocarbazte(HL) and its complex Co(II)-C16H16N2S2O2-DEA was synthesized and characterized by IR, UV-Vis. The optimum color conditions of the complex in 95% ethanol solution(including reaction temperature T, heating time t, and the concentrations of the three components) have been studied by quadratic regression orthogonal design method. According to the quadratic-regression equation, the maximum absorption intensity and optimum color conditions of the complex were calculated. The results were consistent with those gotten by experiment. The influences of common ions on the determination of cobalt and the methods to eliminate the influence are investigated. The maximum absorption peak of the complex is found at 404 nm and molar absorptivity is 5.29 x 10(4) L.mol-1.cm-1. Beer's law is obeyed in the range of 0-20 micrograms.(25 mL)-1 for Co(II). The composition of Co2+ to HL, and DEA in the complex is 1:2:1. The new method was successfully utilized to the determination of cobalt in VB12 and medicine.
Download full-text PDF |
Source |
---|
PLoS One
December 2024
Guangdong Provincial Hospital of Chinese Medicine (Second Affiliated Hospital of Guangzhou University of Chinese Medicine), Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China.
Background: Further evidence is required regarding the influence of metal mixture exposure on mortality. Therefore, we employed diverse statistical models to evaluate the associations between eight urinary metals and the risks of all-cause and cardiovascular mortality.
Methods: We measured the levels of 8 metals in the urine of adults who participated in the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2018.
Biosensors (Basel)
December 2024
Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing 400030, China.
In this study, we have proposed an electrochemiluminescence (ECL) signal amplification system which is based on two-dimensional (2D) flower-like CdS@Co/Mo-MOF composites as a co-reaction accelerator of the g-CN/SO system for ultrasensitive detection of chlorpromazine hydrochloride (CPH). Specifically, the 2D flower-like Co/Mo-MOF with mesoporous alleviated the aggregation of CdS NPs while simultaneously fostering reactant-active site contact and improving the reactant-product transport rate. This allowed the material to act as a novel co-reaction accelerator, speeding up the transformation of the SO into SO and enhancing the cathodic ECL emission of g-CN.
View Article and Find Full Text PDFACS Nano
December 2024
School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, PR China.
The development of high-performance bifunctional single-atom catalysts for use in applications, such as zinc-air batteries, is greatly impeded by mild oxygen reduction and evolution reactions (ORR and OER). Herein, we report a bifunctional oxygen electrocatalyst designed to overcome these limitations. The catalyst consists of well-dispersed low-nuclearity Co clusters and adjacent Co single atoms over a nitrogen-doped carbon matrix (Co/NC).
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
Central Department of Geology, Tribhuvan University, Kirtipur, Kathmandu, 44600, Nepal.
Freshwater ecosystems, including high-altitude lakes, can be affected by trace metal pollution derived from a mix of natural sources and anthropogenic activities. These pollutants often collect in surface sediments, with notable concentrations in the deeper areas of lakes. To evaluate the environmental risk associated with metal contaminated sediment in Rara Lake, southern Himalaya, surface sediment samples were systematically collected in November 2018, with a subsequent specific emphasis on determinations of trace element concentrations.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei University of Technology, Hefei 230009, China.
Heterogeneous cobalt phthalocyanine has emerged as a promising molecular catalyst for electrochemical reduction of CO to methanol. Boosting both electrocatalytic durability and selectivity remains a great challenge, which is more difficult with unknown regulation factors for the HER side reaction. Herein, to discover the key to balancing the durability and selectivity, as well as HER regulation, we carried out GC-DFT calculations, based on which dynamic product distribution modeling was conducted to visually present the variation of the product distribution within the applied voltage range.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!