A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

T 1 rho-relaxation mapping of human femoral-tibial cartilage in vivo. | LitMetric

T 1 rho-relaxation mapping of human femoral-tibial cartilage in vivo.

J Magn Reson Imaging

Metabolic Magnetic Resonance Research and Computing Center (MMRRCC), Department of Radiology, Stellar-Chance Laboratories, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104-6100, USA.

Published: September 2003

Purpose: To demonstrate the in vivo feasibility of measuring spin-lattice relaxation time in the rotating frame (T(1rho)); and T(1rho)-dispersion in human femoral cartilage. Furthermore, we aimed to compute the baseline T(1rho)-relaxation times and spin-lock contrast (SLC) maps on healthy volunteers, and compare relaxation times and signal-to-noise ratio (SNR) with corresponding T(2)-weighted images.

Materials And Methods: All MR imaging experiments were performed on a 1.5 T GE Signa scanner (GEMS, Milwaukee, WI) using a custom built 15-cm transmit-receive quadrature birdcage radio-frequency (RF) coil. The T(1rho)-prepared magnetization was imaged with a single-slice two-dimensional fast spin-echo (FSE) pulse sequence preencoded with a three-pulse cluster consisting of two hard 90 degrees pulses and a low power spin-lock pulse. T(1rho)-dispersion imaging was performed by varying the spin-lock frequency from 100 to 500 Hz in five steps in addition to varying the length of the spin-lock pulse.

Results: The average T(1rho)-relaxation times in the weight-bearing (WB) and nonweight-bearing (NWB) regions of the femoral condyle were 42.2 +/- 3.6 msec and 55.7 +/- 2.3 msec (mean +/- SD, N = 5, P < 0.0001), respectively. In the same regions, the corresponding T(2)-relaxation times were 31.8 +/- 1.5 msec and 37.6 +/- 3.6 msec (mean +/- SD, N = 5, P < 0.0099). T(1rho)-weighted images have approximately 20%-30% higher SNR than the corresponding T(2)-weighted images for similar echo time. The average SLC in the WB region of femoral cartilage was 30 +/-4.0%. Furthermore, SLC maps provide better contrast between fluid and articular surface of femoral-tibial joint than T(1rho)-maps. The T(1rho)-relaxation times varied from 32 msec to 42 msec ( approximately 31%) in the WB and 37 msec to 56 msec ( approximately 51%) in NWB regions of femoral condyle, respectively, in the frequency range 0-500 Hz (T(1rho)-dispersion).

Conclusion: The feasibility of performing in vivo T(1rho) relaxation mapping in femoral cartilage at 1.5T clinical scanner without exceeding Food and Drug Administration (FDA) limits on specific absorption rate (SAR) of RF energy was demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmri.10358DOI Listing

Publication Analysis

Top Keywords

+/- msec
16
femoral cartilage
12
t1rho-relaxation times
12
slc maps
8
snr corresponding
8
corresponding t2-weighted
8
nwb regions
8
regions femoral
8
femoral condyle
8
msec
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!