AI Article Synopsis

  • Researchers cloned two sulfate transporters, LeST1-1 and LeST1-2, from tomato plants and found they share 76% amino acid identity and belong to a high-affinity group of sulfate transporters.
  • Both transporters demonstrated a high affinity for sulfate, with Km values around 11.5 µM and 9.8 µM, which is consistent with other known Group-1 sulfate transporters.
  • LeST1-1 is mainly expressed in tomato root tissues while LeST1-2 is present in roots, leaves, and stems, showing increased expression due to sulfate deficiency and in response to a pathogen infection.

Article Abstract

Two cDNAs, LeST1-1 (AF347613) and LeST1-2 (AF347614), encoding sulfate transporters have been cloned from tomato (Lycopersicon esculentum Mill.) by reverse transcription-polymerase chain reaction and their expression characterised. Sharing 76% identity at the amino acid level, the transporters are phylogenetically associated with the Group-1, high-affinity plant sulfate transporters. Both were shown to have high affinity for sulfate by uptake kinetic analysis using a yeast (Saccharomyces cerevisiae) sulfate-transporter mutant. Km values of 11.5 microM and 9.8 microM were calculated for LeST1-1 and LeST1-2, respectively, the same order of magnitude as those previously reported for several other Group-1 high-affinity sulfate transporters. In situ hybridisation to S-deficient tomato roots showed LeST1-1 to be expressed in the epidermis and pericycle, whereas LeST1-2 expression was located to the epidermis only. Northern analysis shows that the mRNA abundances of both LeST1-1 and LeST1-2 are upregulated in the root in response to sulfate deprivation. LeST1-1 is specifically expressed in root tissue, a characteristic of Group-1 sulfate transporters. LeST1-2, however, was also detected in tomato leaves and stems and is upregulated and expressed to a similar extent in these tissues under conditions of sulfate deprivation. Induction of LeST1-2 expression was also observed in the vascular tissues of a resistant line of tomato infected with the vascular wilt pathogen Verticillium dahliae.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-003-1085-5DOI Listing

Publication Analysis

Top Keywords

sulfate transporters
20
sulfate
9
high-affinity sulfate
8
pathogen verticillium
8
verticillium dahliae
8
group-1 high-affinity
8
lest1-1 lest1-2
8
lest1-1 expressed
8
lest1-2 expression
8
sulfate deprivation
8

Similar Publications

[Correction of the pathogenic mutation in the deafness gene via prime editor and adenine base editor ].

Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi

January 2025

Department of Laboratory, Wenzhou People's Hospital, Wenzhou Third Clinical College of Wenzhou Medical University, Wenzhou Maternal and Child Health Hospital, Wenzhou325027, China.

To investigate the feasibility of prime editor (PE) and adenine base editor (ABE) for correction the pathogenic variant of the human deafness gene c.1229C>T. From March 2023 to April 2024, prime editing guide RNA (pegRNA) expression vectors as well as single guide RNA (sgRNA) were designed and constructed for the c.

View Article and Find Full Text PDF

Protective role of ABCC drug subfamily resistance transporters (ABCC1-7) in intestinal inflammation.

Immunol Res

January 2025

Inflammatory Bowel Disease Clinic, Department of Gastroenterology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga #15, Col. Belisario Domínguez Sección XVI, 14080, Mexico City, CPCDMX, Mexico.

The ABCC subfamily contains thirteen members. Nine of these transporters are called multidrug resistance proteins (MRPs). The MRPs have been associated with developing ulcerative colitis (UC).

View Article and Find Full Text PDF

Low molecular weight fucoidan (LMWF) has been proved to be more potent than its prototype, many degradation methods have been used to prepare LMWF. This study is conducted to further explore the biological activities of LMWF prepared by ultrasound based on anticoagulation, antioxidation, and inhibition of urate induced pyroptosis and reabsorption transporters overexpression in human renal tubular epithelial cells. Data revealed that ultrasound successfully degraded fucoidan to be LMWF, the product treated for no more than 2.

View Article and Find Full Text PDF

Genetic studies of the metabolome can uncover enzymatic and transport processes shaping human metabolism. Using rare variant aggregation testing based on whole-exome sequencing data to detect genes associated with levels of 1,294 plasma and 1,396 urine metabolites, we discovered 235 gene-metabolite associations, many previously unreported. Complementary approaches (genetic, computational (in silico gene knockouts in whole-body models of human metabolism) and one experimental proof of principle) provided orthogonal evidence that studies of rare, damaging variants in the heterozygous state permit inferences concordant with those from inborn errors of metabolism.

View Article and Find Full Text PDF

Wogonin effects on the efflux transporters BCRP and MRP2, explain its effectiveness in ulcerative colitis: Implications for metabolic and transport interactions.

Pharmacol Res

December 2024

State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, China. Electronic address:

Wogonin is a flavonoid with efficacy in ulcerative colitis (UC), while the mechanism of its action remains to be fully elucidated. Previous research has indicated that the triple recycling significantly enhances the bioavailability of flavonoids. The efflux transporters, breast cancer resistance protein (BCRP) and multidrug resistance-associated protein 2 (MRP2) are critical regulatory molecules within the enterohepatic triple recycling pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!