The bioassay-guided fractionation of stems from Kielmeyera variabilis, traditionally used in Brazilian folk medicine, yielded assiguxanthone-B (1), kielcorin (4), 2,5-dihydroxybenzoic acid (3), and a mixture of xanthones containing assiguxanthone-B (1) and 1,3,5,6-tetrahydroxy-2-prenylxanthone (2) (1:1 w/w). The xanthone mixture inhibited Staphylococcus aureus and Bacillus subtilis at a concentration of 6.25 g/ml. When tested alone, the minimal inhibitory concentration of assiguxanthone-B was 25 g/ml against B. subtilis. Kielcorin and 2,5-dihydroxybenzoic acid were inactive against both strains. None of the fractions was active against Escherichia coli or Pseudomonas aeruginosa. Viable cells of S. aureus were reduced by a 1-3 log CFU/ml within 12 h after exposure of one to eight times the MIC of the xanthone mixture. It is not known whether the tetrahydroxy-2-prenylxanthone or other components of the xanthone mixture are responsible for the main antibacterial activity or whether additive or synergistic action is involved
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/s0074-02762003000400023 | DOI Listing |
BMC Chem
December 2024
Food Science and Technology, Universiti Putra Malaysia, 43400, Serdang, Malaysia.
This study explores the use of green solvent systems by investigating the solubility and thermodynamic properties of xanthone (1) in triglyceride-based tricaprin (2) and tricaprylin (3) mixtures, aiming to replace traditional organic solvents. The solubility profile exhibited a concave trend, and the highest solubility was observed at a solute-free fraction (x) of 0.36.
View Article and Find Full Text PDFChem Sci
November 2024
State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 China
Xanthone-based polyketides with complex molecular frameworks and potent bioactivities distribute and function in different biological kingdoms, yet their biosynthesis remains under-investigated. In particular, nothing is known regarding how to switch between the C-C (C-selective) and C-C bond (C-selective) cleavages of anthraquinone intermediates involved in biosynthesizing strikingly different frameworks of xanthones and their siblings. Enabled by our characterization of antiosteoporotic brunneoxanthones, a subfamily of polyketides from FB-2, we present herein the brunneoxanthone biosynthetic gene cluster and the C-selective cleavage of anthraquinone (chrysophanol) hydroquinone leading ultimately to the bioactive brunneoxanthones under the catalysis of BruN (an undescribed atypical non-heme iron dioxygenase) in collaboration with BruM as a new oxidoreductase that reduces the anthraquinone into its hydroquinone using NADPH as a cofactor.
View Article and Find Full Text PDFJ Nat Prod
October 2024
Univ Angers, SONAS, SFR QUASAV, F-49000 Angers, France.
The identification of bioactive natural products (NPs) in complex mixtures has become an important subject of contemporary NP research. In an attempt to address this challenge, the present work proposes an integrated strategy that combines tandem mass spectrometry (MS)-based molecular networking (MN), a partial least-squares (PLS) chemometric model, as well as C NMR-based dereplication using MixONat software. In addition, an advanced glycation end product (AGEs) assay was used for activity evaluation.
View Article and Find Full Text PDFFood Chem Toxicol
October 2024
Research Group in Alternative Methods for Determining Toxics Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100, Valencia, Spain.
J Food Sci
June 2024
School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China.
Excessive accumulation of advanced glycation end products (AGEs) in the body is associated with diabetes and its complications. In this study, we aimed to explore the potential and mechanism of coffee leaf extract (CLE) in inhibiting the generation of AGEs and their precursors in an in vitro glycation model using bovine serum albumin and glucose (BSA-Glu) for the first time. High-performance liquid chromatography analysis revealed that CLE prepared with ultrasound pretreatment (CLE-U) contained higher levels of trigonelline, mangiferin, 3,5-dicaffeoylquinic acid, and γ-aminobutyric acid than CLE without ultrasound pretreatment (CLE-NU).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!