OBJECTIVE: To identify the influence of static subtalar pronation (as measured by weight-bearing navicular drop [ND]) on ground impact forces and rate of loading during a single-leg landing. DESIGN AND SETTING: Subjects were grouped (n = 16 per group) on the basis of weight-bearing ND scores (supinators, <5 mm; neutral, 5-10 mm; pronators, >10 mm). Subjects performed 5 single-leg landings, dropping from a 0.3-m height onto a force platform. An electrogoniometer simultaneously recorded sagittal knee range of motion during the landing task. SUBJECTS: Forty-eight healthy volunteers participated. MEASUREMENTS: Peak vertical force was defined as the highest force recorded in the F(z) direction during landing. Rate of loading was defined as the peak vertical force divided by the time to reach the peak vertical force. Knee-flexion excursion was defined as the change in knee-flexion range from initial contact to peak vertical force. RESULTS: Peak vertical force (P =.769) and rate of loading (P =.703) did not differ among groups. Although secondary analyses identified significant negative correlations between peak force and rate of loading with knee excursion, the amount of knee excursion was similar among groups (P =.744). CONCLUSIONS: Our results de-emphasize the influence of static anatomical foot alignment on impact forces and absorption during a single-leg drop landing and provide further support for the role of knee flexion in dissipation of landing forces. Further investigations are needed to fully elucidate the role of subtalar pronation and other lower extremity alignment factors in force dissipation during dynamic functional activities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC155506 | PMC |
Sci Rep
January 2025
Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran.
Breast cancer ranks as the second leading reason of cancer mortality among females globally, emphasizing the critical need for novel anticancer treatments. In current work, berberine-zinc oxide conjugated chitosan nanoparticles were synthesized and characterized using various characterization techniques. The cytotoxic effects of CS-ZnO-Ber NPs on MCF-7 cells were assessed using the MTT assay.
View Article and Find Full Text PDFBioresour Technol
January 2025
Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore.
The improvement of biogas production in anaerobic digestion (AD) by biochar introduction has been demonstrated. However, the distribution of biochar in the digester and its effect on AD have been seldom explored. In this study, the distribution of biochar and their impact on AD were investigated in a 30 L semi-continuously operated bench-scale anaerobic digester.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China. Electronic address:
Rational regulation of interface structure in photocatalysts is a promising strategy to improve the photocatalytic performance of carbon dioxide (CO) reduction. However, it remains a challenge to modulate the interface structure of multi-component heterojunctions. Herein, a strategy integrating heterojunction with facet engineering is developed to modulate the interface structure of metal-organic frameworks (MOF)-based heterojunctions.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China. Electronic address:
Photosynthetic bacteria (PSB) excel in wastewater treatment by removing pollutants and generating biomass but are challenging to optimize due to complex operational and environmental interactions. Neural Ordinary Differential Equations, Elastic Net, Stacking, and Categorical Boosting were applied as artificial intelligence methods to predict chemical oxygen demand (COD) removal efficiency, biomass productivity, biomass yield, and energy yield. Among these, the Stacking model demonstrated superior predictive performance across all targets.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Neuroscience Department, University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT 06030, USA.
Background: In neuroscience, Ca imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.
Methods: Primary neuronal cultures were prepared from the cortex of newborn pups.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!