Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The role of the Ca2+-dependent phosphatase calcineurin (CaN) in the modulation of Ca2+-dependent Cl- channels (ClCa) was studied in freshly isolated rabbit coronary arterial myocytes. Immunocytochemical experiments showed that calmodulin-dependent protein kinase II (CaMKII) and CaN were distributed evenly throughout the cytoplasm of coronary myocytes at rest and translocated to the plasmalemma when intracellular Ca2+ was increased. ClCa currents (ICl(Ca)) elicited by cell dialysis with fixed intracellular Ca2+ levels up to 500 nM were inhibited by 10 microM cyclosporin A (CsA), a specific inhibitor of CaN, in a voltage-dependent manner, whereas currents evoked by 1 microM Ca2+ were not affected. Inhibition of CaN with CsA also led to a significant reduction in Ca2+ sensitivity of the channel at +50 mV; half-maximal activation increased from 363 +/- 16 nM Ca2+ in control to 515 +/- 40 nM Ca2+ in the presence of CsA. Similar effects were observed on ICl(Ca) when a specific peptide fragment inhibitor of CaN (CaN-AF, 5 microM) was dialysed into the cell via the pipette (500 nM Ca2+). Application of KN-93 (10 microM), a specific inhibitor of CaMKII, enhanced ICl(Ca) in myocytes dialysed with 1 microM Ca2+ but produced no significant effect on this current when the cells were dialysed with 350 or 500 nM Ca2+. These results are consistent with the notion that in coronary arterial cells, the activity of ClCa is enhanced by dephosphorylation of the channel or a closely associated regulatory protein. Moreover the balance of CaN and CaMKII regulating ICl(Ca) is dependent on the level of Ca2+ used to activate ICl(Ca).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2343461 | PMC |
http://dx.doi.org/10.1113/jphysiol.2003.043836 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!