Many infants who undergo cardiac surgery have a congenital cyanotic defect where the heart is chronically perfused with hypoxemic blood. Infant hearts adapt to chronic hypoxemia by activation of intracellular protein kinase signal transduction pathways. However, the involvement of heat shock protein 70 in adaptation to chronic hypoxemia and its role in protein kinase signaling pathways is unknown. We determined expression of message and subcellular protein distribution for inducible (Hsp70i) and constitutive heat shock protein 70 (Hsc70) in chronically hypoxic and normoxic infant human and rabbit hearts and their relationship to protein kinases. In chronically hypoxic human and rabbit hearts message levels for Hsp70i were elevated 4- to 5-fold compared with normoxic hearts, Hsp70i protein was redistributed from the particulate to the cytosolic fraction. In normoxic infants Hsp70i protein was distributed almost equally between the cytosolic and particulate fractions. Hsc70 message and subcellular distribution of Hsc70 protein were unaffected by chronic hypoxia. We then determined if protein kinases influence Hsp70i protein subcellular distribution. In rabbit hearts SB203580 and chelerythrine reduced Hsp70i message levels, whereas SB203580, chelerythrine, and curcumin reversed the subcellular redistribution of Hsp70i protein caused by chronic hypoxia, with no effect in normoxic hearts, indicating regulation of Hsp70i message and subcellular distribution of Hsp70i protein in chronically hypoxic rabbit hearts is influenced by protein kinase C and mitogen-activated protein kinases, specifically p38 MAPK and JNK. We conclude the Hsp70 signal transduction pathway plays an important role in adaptation of infant human and rabbit hearts to chronic hypoxemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M212993200 | DOI Listing |
Int J Biol Macromol
January 2025
College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China; Sanya Oceanographic Institute, Ocean University of China, Floor 7, Building 1, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya, Hainan Province, China. Electronic address:
Rapid control of hemorrhage is vital in first-aid and surgery. As representative of emergency hemostatic materials, inorganic porous materials achieve rapid hemostasis through concentrating protein coagulation factors by water adsorption to accelerate the coagulation reaction process, however their efficacy is often limited by the insufficient contact of material with blood and the lack of blood clot strength. Herein, we report an ultrafast dispersing and in situ gelation sponge (SG/DB) based on anchoring interface effect for hemorrhage control using freeze drying method after mixing fish scale gel (SG) and tert-butyl alcohol (TBA) pre-crystallized diatom biosilica (DB).
View Article and Find Full Text PDFHeart Rhythm
January 2025
Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA. Electronic address:
Background: Spontaneously occurring life threatening reentrant arrhythmias result when a propagating premature beat encounters a region with significant dispersion of refractoriness. Although localized structural tissue heterogeneities and prescribed cell functional gradients have been incorporated into computational electrophysiological models, a quantitative framework for the evolution from normal to abnormal behavior that occurs via disease is lacking.
Objective: The purpose of this study was to develop a probabilistic modeling framework that represents the complex interplay of cell function and tissue structure in health and disease which predicts the emergence of premature beats and the initiation of reentry.
Blood
January 2025
NIH, National Heart Lung Blood Institute, Bethesda, Maryland, United States.
Monoclonal antibodies (mAbs) improve survival of patients with mature B-cell malignancies. Fcγ-receptor dependent effector mechanisms kill tumor cells but can promote antigen loss through trogocytosis, contributing to treatment failures. Cell-bound mAbs trigger the complement cascade to deposit C3 activation fragments and lyse cells.
View Article and Find Full Text PDFBiology (Basel)
November 2024
Department of Medicine, Division of Cardiology, University of Washington, Seattle, WA 98195, USA.
Atherosclerosis is caused by the accumulation of cholesterol within intimal smooth muscle cells (SMCs) and macrophages. However, the transporter ATP-binding cassette subfamily A, member 1 (ABCA1), can remove cholesterol from these intimal, cells reducing atherosclerosis. Antagomir-mediated inhibition of miR-33a-5p, a microRNA that represses ABCA1 translation, promotes ABCA1-dependent cholesterol efflux and may impede atherosclerosis development.
View Article and Find Full Text PDFTranspl Immunol
January 2025
University of Zagreb School of Medicine, Department of Cardiovascular Diseases, University Hospital Centre Zagreb, Šalata 3, Zagreb, Croatia. Electronic address:
Introduction: While lymphodepletion is considered a therapeutic effect of rabbit anti-thymocyte globulin (rATG), a concomitant decrease in basophil count (BC) has unknown clinical effect.
Objective: To investigate the association between BC following rATG induction and acute cellular rejection (ACR) during the first post-HTx year.
Methods: Retrospective single-center study included 183 HTx recipients receiving rATG induction between 2010 and 2021 (mean age 52 ± 13 years, 23 % female).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!