Signature gene expression profiles discriminate between isoniazid-, thiolactomycin-, and triclosan-treated Mycobacterium tuberculosis.

Antimicrob Agents Chemother

GlaxoSmithKline Research and Development, Stevenage, Hertfordshire, SG1 2NY, United Kingdom.

Published: September 2003

Genomic technologies have the potential to greatly increase the efficiency of the drug development process. As part of our tuberculosis drug discovery program, we used DNA microarray technology to profile drug-induced effects in Mycobacterium tuberculosis. Expression profiles of M. tuberculosis treated with compounds that inhibit key metabolic pathways are required as references for the assessment of novel antimycobacterial agents. We have studied the response of M. tuberculosis to treatment with the mycolic acid biosynthesis inhibitors isoniazid, thiolactomycin, and triclosan. Thiolactomycin targets the beta-ketoacyl-acyl carrier protein (ACP) synthases KasA and KasB, while triclosan inhibits the enoyl-ACP reductase InhA. However, controversy surrounds the precise mode of action of isoniazid, with both InhA and KasA having been proposed as the primary target. We have shown that although the global response profiles of isoniazid and thiolactomycin are more closely related to each other than to that of triclosan, there are differences that distinguish the mode of action of these two drugs. In addition, we have identified two groups of genes, possibly forming efflux and detoxification systems, through which M. tuberculosis may limit the effects of triclosan. We have developed a mathematical model, based on the expression of 21 genes, which is able to perfectly discriminate between isoniazid-, thiolactomycin-, or triclosan-treated M. tuberculosis. This model is likely to prove invaluable as a tool to improve the efficiency of our drug development programs by providing a means to rapidly confirm the mode of action of thiolactomycin analogues or novel InhA inhibitors as well as helping to translate enzyme activity into whole-cell activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC182614PMC
http://dx.doi.org/10.1128/AAC.47.9.2903-2913.2003DOI Listing

Publication Analysis

Top Keywords

mode action
12
expression profiles
8
discriminate isoniazid-
8
isoniazid- thiolactomycin-
8
thiolactomycin- triclosan-treated
8
mycobacterium tuberculosis
8
efficiency drug
8
drug development
8
isoniazid thiolactomycin
8
tuberculosis
7

Similar Publications

Chemoproteomic Profiling of Clickable Fumarate Probes for Target Identification and Mechanism of Action Studies.

ACS Chem Biol

January 2025

Biogen, Chemical Biology & Proteomics, 225 Binney Street, Cambridge, Massachusetts 02142, United States.

Dimethyl fumarate (DMF) is an established oral therapy for multiple sclerosis worldwide. Although the clinical efficacy of these fumarate esters has been extensively investigated, the mode of action and pharmacokinetics of fumarates have not been fully elucidated due to their broad-spectrum reactivity and complex metabolism in vivo. To better understand the mechanism of action of DMF and its active metabolite, monomethyl fumarate (MMF), we designed and utilized clickable probes to visualize and enrich probe-modified proteins.

View Article and Find Full Text PDF

Background: Glyphosate is an extensively employed herbicide in agriculture, specifically for sugarcane cultivation. The situation is different with the extensive physiological and genetic effects exerted by this herbicide on a range of plant species, including sugarcane, whose model basis is still poorly characterized, although its primary mode of action, which acts on the EPSPS enzyme in the shikimic acid pathway, is completely elucidated. The current study was aimed at investigating the stability of glyphosate formulation, molecular interactions of glyphosate formulation with rbcL enzyme associated with chlorophyll metabolism, and its effects on varieties of sugarcane.

View Article and Find Full Text PDF

Based on the DCV-C system of fullerene acceptor organic solar cell active materials, the charge transfer process of D-A type molecular materials under the action of an external electric field () was explored. Within the range of electric field application, the excited state characteristics exhibit certain regular changes. Based on reducing the excitation energy, the excitation mode shows a trend of developing toward low excited states.

View Article and Find Full Text PDF

Vitamin B2 Operates by Dual Thermodynamic and Kinetic Mechanisms to Selectively Tailor Urate Crystallization.

J Am Chem Soc

January 2025

Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States.

Here we demonstrate how a biologically relevant molecule, riboflavin (vitamin B2), operates by a dual mode of action to effectively control crystallization of ammonium urate (NHHU), which is associated with cetacean kidney stones. In situ microfluidics and atomic force microscopy experiments confirm a strong interaction between riboflavin and NHHU crystal surfaces that substantially inhibits layer nucleation and spreading by kinetic mechanisms of step pinning and kink blocking. Riboflavin does not alter the distribution of tautomeric urate isomers, but its adsorption on NHHU crystal surfaces does interfere with the effects of minor urate tautomer by limiting its ability to induce NHHU crystal defects while also suppressing NHHU nucleation and inhibiting crystal growth by 80% at an uncharacteristically low modifier concentration.

View Article and Find Full Text PDF

Tuberculosis (TB), a leading infectious disease caused by the pathogen , poses a significant treatment challenge due to its unique characteristics and resistance to existing drugs. The conventional treatment regimens, which are lengthy and involve multiple drugs, often result in poor patient adherence and subsequent drug resistance, particularly with multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains. This highlights the urgent need for novel anti-TB therapies and new drug targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!