Disruption of ergosterol biosynthesis confers resistance to amphotericin B in Candida lusitaniae.

Antimicrob Agents Chemother

Departments of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA.

Published: September 2003

Candida lusitaniae is an emerging human pathogen that, unlike other fungal pathogens, frequently develops resistance to the commonly used antifungal agent amphotericin B. Amphotericin B is a member of the polyene class of antifungal drugs, which impair fungal cell membrane integrity. Here we analyzed mechanisms contributing to amphotericin B resistance in C. lusitaniae. Sensitivity to polyenes in the related fungi Saccharomyces cerevisiae and Candida albicans requires the ergosterol biosynthetic gene ERG6. In an effort to understand the mechanisms contributing to amphotericin B resistance in C. lusitaniae, we isolated the ERG6 gene and created a C. lusitaniae erg6 delta strain. This mutant strain exhibited a growth defect, was resistant to amphotericin B, and was hypersensitive to other sterol inhibitors. Based on the similarities between the phenotypes of the erg6 delta mutant and clinical isolates of C. lusitaniae resistant to amphotericin B, we analyzed ERG6 expression levels and ergosterol content in multiple clinical isolates. C. lusitaniae amphotericin B-resistant isolates were found to have increased levels of ERG6 transcript as well as reduced ergosterol content. These changes suggest that another gene in the ergosterol biosynthetic pathway could be mutated or misregulated. Further transcript analysis showed that expression of the ERG3 gene, which encodes C-5 sterol desaturase, was reduced in two amphotericin B-resistant isolates. Our findings reveal that mutation or altered expression of ergosterol biosynthetic genes can result in resistance to amphotericin B in C. lusitaniae.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC182600PMC
http://dx.doi.org/10.1128/AAC.47.9.2717-2724.2003DOI Listing

Publication Analysis

Top Keywords

ergosterol biosynthetic
12
amphotericin
10
resistance amphotericin
8
lusitaniae
8
candida lusitaniae
8
mechanisms contributing
8
contributing amphotericin
8
amphotericin resistance
8
resistance lusitaniae
8
erg6 delta
8

Similar Publications

Antifungal Activity of Genistein Against Phytopathogenic Fungi Through ROS-Mediated Lipid Peroxidation.

Plants (Basel)

January 2025

Research Institute for Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), The SATCM's Key Unit of Discovering and Developing New Marine TCM Drugs, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.

() is a necrotrophic fungus responsible for apple Valsa canker, which significantly diminishes apple production yields and quality in China. Our serendipitous findings revealed that genistein significantly inhibits the mycelial growth of , with an inhibition rate reaching 42.36 ± 3.

View Article and Find Full Text PDF

The proteomic response of to amphotericin B (AmB) reveals the involvement of the RTA-like protein RtaA in AmB resistance.

Microlife

December 2024

Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Adolf-Reichwein-Str. 23, 07745 Jena, Germany.

The polyene antimycotic amphotericin B (AmB) and its liposomal formulation AmBisome belong to the treatment options of invasive aspergillosis caused by . Increasing resistance to AmB in clinical isolates of species is a growing concern, but mechanisms of AmB resistance remain unclear. In this study, we conducted a proteomic analysis of exposed to sublethal concentrations of AmB and AmBisome.

View Article and Find Full Text PDF

Cercosporidium personatum (CP) causes peanut late leaf spot (LLS) disease with 70% yield losses unless controlled by fungicides. CP grows slowly in culture, exhibiting variable phenotypes. To explain those variations, we analyzed the morphology, genomes, transcriptomes and chemical composition of three morphotypes, herein called RED, TAN, and BROWN.

View Article and Find Full Text PDF

Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus causing fever, myalgia, and debilitating joint swelling and pain, which in many patients becomes chronic. The frequent epidemics of CHIKV across the world pose a significant public health burden necessitating the development of effective antiviral therapeutics. A cellular imaging-based high-content screening of natural compounds identified withaferin A (WFA), a steroidal lactone isolated from the plant Withania somnifera, as a potent antiviral against CHIKV.

View Article and Find Full Text PDF

Effects of mycelium post-ripening time on the yield, quality, and physicochemical properties of Pleurotus geesteranus.

Sci Rep

December 2024

Hangzhou Academy of Agricultural Sciences, 261 Zhusi Road, Zhuangtang Street, Hangzhou, 310024, Zhejiang, China.

This study determined the effects of the mycelium post-ripening time on the growth of Pleurotus geesteranus and the substrate metabolism. The characteristic indexes and timing reflecting the physiological maturity of P. geesteranus mycelium were identified to facilitate precise cultivation in factories.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!