Transgenic insertion of the MHC class II Ea(d)gene in NOD mice restores I-E expression and prevents T-cell-mediated autoimmune diabetes (IDDM). The specific molecular and cellular mechanisms responsible for the diabetes resistance of transgenic NOD.Ea(d)mice remain unclear. We adoptively transferred islet antigen-specific T cell clones into NOD and transgenic NOD.Ea(d)mice to evaluate the level of protection provided by I-E expression against activated effector T cells. We have found that neither neonatal or 3-5-week-old I-E-expressing NOD.Ea(d)mice can completely inhibit the diabetogenic activities of activated islet antigen-specific T cell clones. These data indicate that Ealpha protein expression in NOD antigen presenting cells (APC) does not reduce islet autoantigen presentation in the context of I-A(g7)below the threshold required for stimulation of effector/memory diabetogenic T cells. Our results suggest that the mechanism of Ealpha protein-mediated diabetes resistance in NOD mice may be "antigen ignorance," in which the quantity of islet autoantigens presented in the context of I-A(g7)by APC is reduced below the threshold required to activate nai;ve islet antigen-specific T cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0896-8411(03)00090-8DOI Listing

Publication Analysis

Top Keywords

cell clones
12
transgenic nodeadmice
12
islet antigen-specific
12
activated effector
8
effector cells
8
nod mice
8
i-e expression
8
diabetes resistance
8
antigen-specific cell
8
threshold required
8

Similar Publications

Background: B7 homolog 3 (B7-H3), an overexpressed antigen across multiple solid cancers, represents a promising target for CAR T cell therapy. This study investigated the expression of B7-H3 across various solid tumors and developed novel monoclonal antibodies (mAbs) targeting B7-H3 for CAR T cell therapy.

Methods: Expression of B7-H3 across various solid tumors was evaluated using RNA-seq data from TCGA, TARGET, and GTEx datasets and by flow cytometry staining.

View Article and Find Full Text PDF

Beta-sitosterol regulates PTGS1 to inhibit gastric cancer cell proliferation and angiogenesis.

Prostaglandins Other Lipid Mediat

January 2025

Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing, 312000, China. Electronic address:

Background: Gastric cancer (GC) is the third leading culprit of cancer-related deaths around the world. Beta-sitosterol (BS) is an important phytosterol that has been proven to have anti-proliferative effects on GC and other tumors. However, mechanisms and targets of BS in cancer are rarely explored.

View Article and Find Full Text PDF

We previously isolated a cDNA clone for galactosylceramide expression factor 1, which is the rat homologue of hepatocyte-growth-factor-regulated tyrosine kinase substrate (HGS) and induces galactosylceramide expression and morphological changes in COS-7 cells, and reported that overexpression of HGS induced morphological changes in canine kidney epithelial MDCK cells. HGS is a component of the endosomal sorting complexes required for transport machinery that mediates endosomal multivesicle body formation. In this study, the overexpression of HGS induced epithelial-mesenchymal transition and caused transformation in MDCK cells, whereas the overexpression of a coiled-coil domain of HGS inhibited induction of epithelial-mesenchymal transition by HGF stimulation.

View Article and Find Full Text PDF

Feasibility of Ex Vivo Ligandomics.

Biomolecules

January 2025

Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA.

We developed ligandomics for the in vivo profiling of vascular ligands in mice, discovering secretogranin III (Scg3) as a novel angiogenic factor that selectively binds to retinal vessels of diabetic but not healthy mice. This discovery led to the development of anti-Scg3 therapy for ocular vasculopathies. However, in vivo ligandomics requires intracardial perfusion to remove unbound phage clones, limiting its use to vascular endothelial cells (ECs).

View Article and Find Full Text PDF

Mycosis fungoides (MF) is a rare malignancy, with an indolent course in the early stages of the disease. However, due to major molecular and clinical heterogeneity, patients at an advanced stage of the disease have variable responses to treatment and considerably reduced life expectancy. Today, there is a lack of specific markers for the progression from early to advanced stages of the disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!