Ineffectiveness of malaria treatment is in many cases explained by chloroquine resistance (CR) of plasmodia (CRP) which dominates in some regions of Africa and South-East Asia. The authors present their experience in malaria treatment obtained during many years, analyse malaria treatment by new antimalaria drugs in "non-immune" persons temporarily living in endemic regions.

Download full-text PDF

Source

Publication Analysis

Top Keywords

malaria treatment
12
[modern treatment
4
treatment malaria]
4
malaria] ineffectiveness
4
ineffectiveness malaria
4
treatment cases
4
cases explained
4
explained chloroquine
4
chloroquine resistance
4
resistance plasmodia
4

Similar Publications

Malaria monoclonals block brain binding.

Trends Parasitol

January 2025

Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia; Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia.

In Plasmodium falciparum malaria, infected cells accumulate in blood vessels of organs, including the brain. Recently, Reyes et al. identified monoclonal antibodies that stop infected cells from binding to the endothelial protein C receptor (EPCR) in a model of brain blood vessels.

View Article and Find Full Text PDF

Malaria vaccines consisting of metabolically active Plasmodium falciparum (Pf) sporozoites can offer improved protection compared with currently deployed subunit vaccines. In a previous study, we demonstrated the superior protective efficacy of a three-dose regimen of late-arresting genetically attenuated parasites administered by mosquito bite (GA2-MB) compared with early-arresting counterparts (GA1-MB) against a homologous controlled human malaria infection. Encouraged by these results, we explored the potency of a single GA2-MB immunization in a placebo-controlled randomized trial.

View Article and Find Full Text PDF

Factors associated with contracting border malaria: A systematic and meta-analysis.

PLoS One

January 2025

School of Nursing and Public Health, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa.

Vector resistance, human population movement, and cross-border malaria continue to pose a threat to the attainment of malaria elimination goals. Border malaria is prominent in border regions characterised by poor access to health services, remoteness, and vector abundance. Human socio-economic behaviour, vectoral behaviour, access and use of protective methods, age, sex, and occupation have been identified in non-border regions as key predictors for malaria.

View Article and Find Full Text PDF

Repellency and toxicity of long-lasting insecticide-treated bed nets (LLINs) to bed bugs.

PLoS One

January 2025

Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America.

Vector control is essential for eliminating malaria, a vector-borne parasitic disease responsible for over half a million deaths annually. Success of vector control programs hinges on community acceptance of products like long-lasting insecticide-treated nets (LLINs). Communities in malaria-endemic regions often link LLIN efficacy to their ability to control indoor pests such as bed bugs (Cimex lectularius L.

View Article and Find Full Text PDF

Background: Malaria remains a major cause of preventable deaths among children worldwide, despite the availability of several interventions for controlling and eliminating the disease. The WHO recommended the first malaria vaccine, RTS, S/AS01 in October 2021 to immunize children in sub-Saharan Africa. In this study, we set out to evaluate the knowledge, awareness and acceptability of the malaria vaccine among mothers of under 5 in south-west Nigeria before the vaccine's rollout in Nigeria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!