Neonatal hypothyroidism impairs structural maturation in the brain and results in diminished electrical activities and energy metabolism. We recently found that glucose utilization (CMR(glc)) is markedly depressed throughout the brain in mice with targeted mutations in thyroid hormone receptor alpha1 (TR alpha 1), but not TR beta. Previous studies had shown that CMR(glc) increases linearly with spike frequency in the afferent pathways to synapse-rich regions in neuropil, but not in neuronal cell bodies. To determine whether the decreased CMR(glc) in mutant TR alpha 1(PV/+) mice reflected lesser synaptic density or reduced functional activity in existing synapses, we stimulated vibrissae unilaterally and measured CMR(glc) bilaterally in four stations of the whisker-to-barrel cortex pathway. Baseline CMR(glc) (unstimulated side) was markedly lower in all four stations in the TR alpha 1(PV/+) mutants than in wild-type controls, even though Northern blot and immunohistochemical examinations showed normal Na(+),K(+)-adenosine triphosphatase expression and neuronal differentiation. Despite the lower baseline CMR(glc), however, vibrissal stimulation evoked percent increases in CMR(glc) in the TR alpha 1(PV/+) mutants that were as great as those in wild-type mice. These results indicate that in the TR alpha 1(PV/+) mutants there it is a reduction in synaptic density that is responsible for the decrease in CMR(glc), but functionality of existing synapses is retained.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/en.2003-0414 | DOI Listing |
Viruses
October 2017
Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA.
LuIII, a protoparvovirus pathogenic to rodents, replicates in human mitotic cells, making it applicable for use to kill cancer cells. This virus group includes H-1 parvovirus (H-1PV) and minute virus of mice (MVM). However, LuIII displays enhanced oncolysis compared to H-1PV and MVM, a phenotype mapped to the major capsid viral protein 2 (VP2).
View Article and Find Full Text PDFJ Virol
May 2013
Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA.
The structure of single-stranded DNA (ssDNA) packaging H-1 parvovirus (H-1PV), which is being developed as an antitumor gene delivery vector, has been determined for wild-type (wt) virions and noninfectious (empty) capsids to 2.7- and 3.2-Å resolution, respectively, using X-ray crystallography.
View Article and Find Full Text PDFInt J Cancer
June 2013
First Department of Internal Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany.
This study aimed to investigate the function of toll-like receptors (TLRs) during oncolytic parvovirus H-1 (H-1PV)-induced human immune responses. First, the role of TLRs in the activation of the NFκB transcription factor was characterized; second, the immunologic effects of H-1PV-induced tumor cell lysates (TCL) on human antitumor immune responses were evaluated. A human ex vivo model was used to study immune responses with dendritic cells (DCs).
View Article and Find Full Text PDFJ Virol
April 2012
Tumour Virology Division F010a and Inserm Unit 701, b German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, Heidelberg, Germany.
The rat parvovirus H-1PV is a promising anticancer agent given its oncosuppressive properties and the absence of known side effects in humans. H-1PV replicates preferentially in transformed cells, but the virus can enter both normal and cancer cells. Uptake by normal cells sequesters a significant portion of the administered viral dose away from the tumor target.
View Article and Find Full Text PDFBMC Cancer
October 2011
First Department of Internal Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany.
Background: Parvovirus H-1 (H-1PV) infects and lyses human tumor cells including melanoma, hepatoma, gastric, colorectal, cervix and pancreatic cancers. We assessed whether the beneficial effects of chemotherapeutic agents or targeted agents could be combined with the oncolytic and immunostimmulatory properties of H-1PV.
Methods: Using human ex vivo models we evaluated the biological and immunological effects of H-1PV-induced tumor cell lysis alone or in combination with chemotherapeutic or targeted agents in human melanoma cells +/- characterized human cytotoxic T-cells (CTL) and HLA-A2-restricted dendritic cells (DC).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!