One barrier to interpreting the observational evidence concerning the adverse health effects of air pollution for public policy purposes is the measurement error inherent in estimates of exposure based on ambient pollutant monitors. Exposure assessment studies have shown that data from monitors at central sites may not adequately represent personal exposure. Thus, the exposure error resulting from using centrally measured data as a surrogate for personal exposure can potentially lead to a bias in estimates of the health effects of air pollution. This paper develops a multi-stage Poisson regression model for evaluating the effects of exposure measurement error on estimates of effects of particulate air pollution on mortality in time-series studies. To implement the model, we have used five validation data sets on personal exposure to PM10. Our goal is to combine data on the associations between ambient concentrations of particulate matter and mortality for a specific location, with the validation data on the association between ambient and personal concentrations of particulate matter at the locations where data have been collected. We use these data in a model to estimate the relative risk of mortality associated with estimated personal-exposure concentrations and make a comparison with the risk of mortality estimated with measurements of ambient concentration alone. We apply this method to data comprising daily mortality counts, ambient concentrations of PM10measured at a central site, and temperature for Baltimore, Maryland from 1987 to 1994. We have selected our home city of Baltimore to illustrate the method; the measurement error correction model is general and can be applied to other appropriate locations.Our approach uses a combination of: (1) a generalized additive model with log link and Poisson error for the mortality-personal-exposure association; (2) a multi-stage linear model to estimate the variability across the five validation data sets in the personal-ambient-exposure association; (3) data augmentation methods to address the uncertainty resulting from the missing personal exposure time series in Baltimore. In the Poisson regression model, we account for smooth seasonal and annual trends in mortality using smoothing splines. Taking into account the heterogeneity across locations in the personal-ambient-exposure relationship, we quantify the degree to which the exposure measurement error biases the results toward the null hypothesis of no effect, and estimate the loss of precision in the estimated health effects due to indirectly estimating personal exposures from ambient measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1093/biostatistics/1.2.157DOI Listing

Publication Analysis

Top Keywords

measurement error
20
air pollution
16
personal exposure
16
health effects
12
validation data
12
data
10
exposure
9
model
8
time-series studies
8
pollution mortality
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!