Urokinase plasminogen activator (uPA) receptors (uPAR) can be engaged for activation signaling either by aggregation or by binding exogenous uPA. These signaling mechanisms require uPAR to associate with two distinct adhesion proteins, L-selectin and complement receptor 3 (CR3), respectively. uPAR contains a glycosylphosphatidylinositol anchor, suggesting that it is concentrated within glycosphingolipid-enriched microdomains, or "lipid rafts". This study was undertaken to determine the extent to which uPAR-mediated signaling is compartmentalized to lipid rafts. Human neutrophil uPAR was cross-linked or stimulated with uPA after pretreatment with the lipid raft-disrupting agents, methyl-beta-cyclodextrin or filipin III. Both agents suppressed increases in intracellular Ca(2+) concentrations ([Ca(2+)](i)) triggered by cross-linking, but did not affect [Ca(2+) ](i) in response to uPA. Neutrophil membranes were separated into lipid raft and non-raft fractions, revealing the presence of uPAR and L-selectin, but the virtual absence of CR3 alpha chain in lipid rafts, either constitutively or in response to uPAR aggregation. Fluorescence resonance energy transfer experiments confirmed close proximity of a lipid raft marker to both uPAR and L-selectin, but not CR3. We conclude that uPAR can engage distinct signaling pathways involving different partner proteins that are functionally and physically segregated from one another in both lipid raft and non-raft domains of the plasma membrane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1165/rcmb.2003-0079OC | DOI Listing |
Biochim Biophys Acta Mol Cell Biol Lipids
January 2025
Budker Institute of Nuclear Physics SB RAS, Acad. Lavrentiev Ave.,9, 630090 Novosibirsk, Russia.
Terahertz (THz) radiation has gained attention due to technological advancements, but its biological effects remain unclear. We investigated the impact of 2.3 THz radiation on SK-MEL-28 cells using metabolomic and gene network analysis.
View Article and Find Full Text PDFBiomark Med
January 2025
Department of Clinical Laboratory, Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China.
Raftlin (raft-linking) protein is an essential component of the lipid raft structure and plays a crucial role in B and T cell signaling pathways. It facilitates B cell receptor (BCR) signaling by promoting calcium mobilization and tyrosine phosphorylation in the cells while colocalizing with BCR on the cell membrane. Interestingly, Raftlin is internalized in lipopolysaccharide-stimulated T cells by colocalization with Toll-like receptor 4 (TLR4), wherein it exerts a similar role as in B cells.
View Article and Find Full Text PDFmBio
January 2025
Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA.
Unlabelled: Streptolysin O (SLO) is a virulence determinant of group A (), the agent of streptococcal sore throat and severe invasive infections. SLO is a member of a family of bacterial pore-forming toxins known as cholesterol-dependent cytolysins, which require cell membrane cholesterol for pore formation. While cholesterol is essential for cytolytic activity, accumulating data suggest that cell surface glycans may also participate in the binding of SLO and other cholesterol-dependent cytolysins to host cells.
View Article and Find Full Text PDFRegarding flotillin knockdown, drug resistance is reversed in colorectal cancer (CRC) cell lines; this is associated with the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway, as our previous experimental results indicated. However, the exact mechanism underlying this pathway remains unclear. PI3K inhibitor and activator were added separately to clarify the role of the PI3K pathway in reversing drug resistance.
View Article and Find Full Text PDFPharmacol Ther
January 2025
Aix-Marseille University, INSERM UA 16, Faculty of Medicine, 13015 Marseille, France.
The traditional model of protein structure determined by the amino acid sequence is today seriously challenged by the fact that approximately half of the human proteome is made up of proteins that do not have a stable 3D structure, either partially or in totality. These proteins, called intrinsically disordered proteins (IDPs), are involved in numerous physiological functions and are associated with severe pathologies, e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!