Effects of antenatal steroids on ischemic brain injury in near-term ovine fetuses.

Early Hum Dev

Department of Pediatrics, Brown University School of Medicine, Women and Infants' Hospital of Rhode Island, 101 Dudley Street, Providence, RI 02905-240, USA.

Published: August 2003

Background: Hypoxia/ischemia in utero can result in brain damage to the fetus and newborn. Antenatal steroids are a routine part of the management of women who develop premature labor. Pretreatment of young postnatal rats with dexamethasone before hypoxic/ischemic insults has been reported to attenuate brain injury. However, the effects of antenatal steroids on ischemic brain injury in fetuses have not been investigated.

Objective: We examined the effects of maternally administered antenatal corticosteroids on ischemic brain injury in near-term ovine fetuses.

Methods: Chronically instrumented fetuses at 122 days of gestation were studied 12 h after the last of four 4 mg dexamethasone, or placebo injections were given over 48 h to the ewes. Groups were dexamethasone/ischemic, placebo/ischemic and sham-treated control. Fetuses were exposed to 30 min of carotid occlusion (ischemia) or no occlusion (control) and 72 h of reperfusion. Whole brain coronal sections stained with Luxol fast blue-hematoxylin-eosin were scored for white matter and cerebral cortical lesions. Both areas received pathological scores of 0 to 5 reflecting the degree of injury (0=0%, 1=1-10%, 2=11-50%, 3=51-90%, 4=91-99% and 5=100%). Bilateral carotid blood flow also was measured before, during and after brain ischemia in the dexamethasone/ischemic and placebo/ischemic groups.

Results: White matter (WM) and cerebral cortical scores did not differ between the dexamethasone/ischemic and placebo/ischemic (WM: 3.0+/-1.9 and 2.9+/-1.7; cortex: 3.1+/-1.7 and 2.6+/-1.8, mean+/-S.D.) groups. White matter and cerebral cortical scores were higher in the dexamethasone/ischemic (WM: 3.0+/-1.9, P<0.02; cortex: 3.1+/-1.7, P<0.005) and placebo/ischemic (WM: 2.9+/-1.7, P<0.006; cortex: 2.6+/-1.8, P<0.007) than control (WM: 0.2+/-0.4; cortex: 0.2+/-0.4) group. Carotid blood flow was relatively higher (P<0.05) after 24, 48 and 72 h of reperfusion in the dexamethasone/ischemic than placebo/ischemic group.

Conclusions: We conclude that maternal pretreatment with antenatal dexamethasone did not attenuate ischemic brain injury in the fetus, and that carotid blood flow was higher during reperfusion in fetuses of dexamethasone than placebo-treated ewes, most likely secondary to decreases in arterial oxygen tension.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0378-3782(03)00030-6DOI Listing

Publication Analysis

Top Keywords

brain injury
16
antenatal steroids
12
ischemic brain
12
dexamethasone/ischemic placebo/ischemic
12
white matter
12
matter cerebral
12
cerebral cortical
12
effects antenatal
8
steroids ischemic
8
injury near-term
8

Similar Publications

Background And Objective: To determine whether there is disproportionate reporting of hepatobiliary disorders in the United States (US) FDA Adverse Event Reporting System (FAERS) for individuals prescribed ketamine or esketamine.

Design: We identified Medical Dictionary for Regulatory Activities (MedDRA) terms in the FAERS related to hepatobiliary disorders.

Main Measures: Formulations of ketamine and esketamine were evaluated for the proportionality of reporting for each hepatobiliary disorder parameter using the reporting odds ratio (ROR).

View Article and Find Full Text PDF

Histamine H receptor blockade alleviates neuropathic pain through the regulation of glial cells activation.

Biomed Pharmacother

January 2025

Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurochemistry, 12 Smetna Str., Krakow 31-343, Poland. Electronic address:

Neuropathic pain is a disorder affecting the somatosensory nervous system. However, this condition is also characterized by significant neuroinflammation, primarily involving CNS-resident non-neuronal cells. A promising target for developing new analgesics is histamine H receptor (HR); thus, we aimed to determine the influence of a novel HR antagonist/inverse agonist, E-98 (1-(7-(4-chlorophenoxy)heptyl)-3-methylpiperidine), on pain symptoms and glia activation in model of neuropathic pain in male mice (chronic constriction injury to the sciatic nerve).

View Article and Find Full Text PDF

Cerebral Global Ischemia (CGI) is a devastating neurological condition affecting millions globally each year, leading to significant inflammatory responses and long-term consequences, including delayed neuronal death and neurocognitive impairment. Following brain injury, resident microglial cells are activated, triggering pro-inflammatory cytokine expression and altering neuroimmune processes in a sex-dependent manner, particularly within the hippocampus. Coumestrol, a plant estrogen, is promoted as an alternative to post-menopausal hormone therapy due to its various mechanisms that enhance brain health, including its anti-inflammatory effects.

View Article and Find Full Text PDF

Introduction: Neurogenic bladder dysfunction is a prevalent condition characterized by impaired bladder control resulting from neurological conditions, for example, spinal cord injury or traumatic brain injury (TBI). Detrusor overactivity is a typical symptom of central nervous system damage. A lesion affecting the pontine neural network typically results in loss of tonic inhibition exerted by the pontine micturition center and causes involuntary detrusor contractions.

View Article and Find Full Text PDF

Background: Epileptiform activity, including status epilepticus (SE), occurs in up to one-third of comatose survivors of cardiac arrest and may predict poor outcome. The relationship between SE and hypoxic-ischemic brain injury (HIBI) is not established.

Methods: This is a single-center retrospective study on consecutive patients with post-anoxic super-refractory SE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!