GABA(A) receptor activity and PKC control inhibitory synaptogenesis in CNS tissue slices.

Mol Cell Neurosci

Developmental Physiology, Johannes Müller Institute, Humboldt University Medical School (Charité), Tucholskystr. 2, D-10117 Berlin, Germany.

Published: August 2003

The molecular signals inducing the formation of inhibitory synapses early in development have remained enigmatic. Here we focus on the role of PKC and GABA(A)R receptor activation in the formation of GABAergic synapses in a natural cellular environment. Rapid synaptogenesis was observed in horizontal slices from the superior colliculus of embryonic (E19) rat, when GABA still acts as a depolarizing transmitter, excitatory synaptic activity is absent, and the number of already existing inhibitory synapses is very small. The vast majority of newly formed synapses expressed a GABAergic phenotype. Pharmacological block of GABA(A)R activation and Ca2+ influx through nifedipine-sensitive Ca2+ channels significantly enhanced the number of synaptic contacts, increased the immunoreactivity for GAD65, promoted synaptic accumulation of GABA(A)R clusters, and stimulated the generation of miniature IPSCs. The inhibitory synapse formation in situ was unconditionally prevented by PKC blockade and stimulated by PKC activation. Thus, a negative feedback relationship must exist between PKC and GABA(A)R activation. This new model of experimental synaptogenesis in brain slices promises to be a fruitful approach toward a better understanding of intracellular signaling cascades involved in the activity-regulated synapse formation, a problem of great clinical and theoretical relevance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1044-7431(03)00079-4DOI Listing

Publication Analysis

Top Keywords

inhibitory synapses
8
pkc gabaar
8
gabaar activation
8
synapse formation
8
pkc
5
gabaa receptor
4
receptor activity
4
activity pkc
4
pkc control
4
inhibitory
4

Similar Publications

Control of striatal circuit development by the chromatin regulator .

Sci Adv

January 2025

Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

The pathophysiology of neurodevelopmental disorders involves vulnerable neural populations, including striatal circuitry, and convergent molecular nodes, including chromatin regulation and synapse function. Despite this, how epigenetic regulation regulates striatal development is understudied. Recurrent de novo mutations in are associated with intellectual disability and autism.

View Article and Find Full Text PDF

Recurrent neural networks (RNNs) based on model neurons that communicate via continuous signals have been widely used to study how cortical neural circuits perform cognitive tasks. Training such networks to perform tasks that require information maintenance over a brief period (i.e.

View Article and Find Full Text PDF

Background And Objectives: Autoantibodies (aAbs) against glycine receptors (GlyRs) are mainly associated with the rare neurologic diseases stiff person syndrome (SPS) and progressive encephalomyelitis with rigidity and myoclonus (PERM). GlyR aAbs are also found in other neurologic diseases such as epilepsy. The aAbs bind to different GlyR α-subunits and, more rarely, also to the GlyR β-subunit.

View Article and Find Full Text PDF

The zeta inhibitory peptide (ZIP) interferes with memory maintenance and long-term potentiation (LTP) when administered to mice. However, mice lacking its putative target, protein kinase PKMζ, exhibit normal learning and memory as well as LTP, making the mechanism of ZIP unclear. Here we show that ZIP disrupts LTP by removing surface AMPA receptors through its cationic charge alone.

View Article and Find Full Text PDF

Evolutionary plasticity and functional repurposing of the essential metabolic enzyme MoeA.

Commun Biol

January 2025

Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Structural Microbiology Unit, F-75015, Paris, France.

MoeA, also known as gephyrin in higher eukaryotes, is an enzyme essential for molybdenum cofactor (Moco) biosynthesis and involved in GABA and GlyR receptor clustering at the synapse in animals. We recently discovered that Actinobacteria have a repurposed version of MoeA (Glp) linked to bacterial cell division. Since MoeA exists in all domains of life, our study explores how it gained multifunctionality over time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!