A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In vitro susceptibility testing of ciclopirox, terbinafine, ketoconazole and itraconazole against dermatophytes and nondermatophytes, and in vitro evaluation of combination antifungal activity. | LitMetric

In vitro susceptibility testing of ciclopirox, terbinafine, ketoconazole and itraconazole against dermatophytes and nondermatophytes, and in vitro evaluation of combination antifungal activity.

Br J Dermatol

Division of Dermatology, Department of Medicine, Sunnybrook and Women's College Health Science Center, Sunnybrook site, and the University of Toronto, Toronto, ON, Canada.

Published: August 2003

Background: With the development of newer antifungal agents with activity against both yeasts and filamentous fungi, there is an increased need to develop and standardize in vitro assays that will evaluate the activity of antimycotics against filamentous fungi. In vitro analysis of antifungal activity of these agents would also allow for the comparison between different antimycotics, which in turn may clarify the reasons for lack of clinical response or serve as an effective therapy for patients with chronic infection.

Objectives: To determine the in vitro susceptibility of fungal organisms to ciclopirox, terbinafine, ketoconazole and itraconazole and to evaluate the in vitro activity and mode of interaction of ciclopirox in combination with either terbinafine or itraconazole.

Materials And Methods: In the minimum inhibitory concentration (MIC) study 133 strains were evaluated, including dermatophytes (110 strains; 98 from Trichophyton spp.), Candida spp. (14 strains) and nondermatophyte moulds (nine strains). In vitro susceptibility testing was conducted in microbroth dilutions based on the National Committee for Clinical Laboratory Standards (NCCLS) M27-A proposed standard. The testing MIC ranges were 0.003-2 microg mL-1 for ciclopirox and terbinafine, and 0.06-32 microg mL-1 for itraconazole and ketoconazole. For inoculum preparation, dermatophytes were grown on Heinz oatmeal cereal agar slants. Inoculum suspensions of dermatophytes were diluted in RPMI 1640 (Sigma-Aldrich) with the desired final concentration being 2-5 x 103 c.f.u. mL-1. Once inoculated, the microdilution plates were set up according to the NCCLS M27-A method, incubated at 35 degrees C, and read visually following 7 days of incubation. For azole agents, the MIC was the lowest concentration showing 80% growth inhibition; for terbinafine and ciclopirox, the MIC was the lowest concentration showing 100% growth inhibition. In the synergy studies, 29 strains from nondermatophyte species were evaluated using a checkerboard microdilution method. The concentrations tested were: 0 and 0.06-32 microg mL-1 for itraconazole, and 0 and 0.003-4 microg mL-1 for both terbinafine and ciclopirox. Modes of interaction between drugs were classified as synergism, additivism, antagonism or indifference based on fractional inhibitory concentration index values (FIC index). Synergism was defined as an FIC index of < or = 0.50, additivity as an FIC index of < or = 1.0, and antagonism as an FIC index of > or = 2.0. The drug combination was interpreted as indifferent if neither of the drugs had any visible effect on the presence of the other drug.

Results: In the MIC study, the dermatophyte MIC values (microg mL-1) (mean +/- SEM) were: ciclopirox (0.04 +/- 0.02), terbinafine (0.04 +/- 0.23), itraconazole (2.28 +/- 7.42) and ketoconazole (0.83 +/- 1.99). The yeast MIC values (microg mL-1) (mean +/- SEM) were: ciclopirox (0.05 +/- 0.02), terbinafine (1.77 +/- 0.58), itraconazole (0.18 +/- 0.27) and ketoconazole (0.56 +/- 0.60). The non-dermatophyte fungi MIC values (microg mL-1) (mean +/- SEM) were: ciclopirox (1.04 +/- 2.62), terbinafine (1.04 +/- 0.95), itraconazole (17.87 +/- 16.75) and ketoconazole (10.69 +/- 13.09). In the synergy study, with ciclopirox in combination with terbinafine, mainly a synergistic or additive reaction was observed; there were no cases of antagonism. For ciclopirox in combination with itraconazole, there were some instances of additivism or synergism, with indifference in the majority of instances; there were no cases of antagonism.

Conclusions: In vitro susceptibility testing indicates that ciclopirox may have a broad antimicrobial profile including dermatophytes, yeasts and other nondermatophytes. Terbinafine is extremely potent against dermatophytes. In vitro evaluation of activity of ciclopirox and terbinafine suggests many instances of synergy or additivism; for ciclopirox and itraconazole there may be indifference, synergy or additivism.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1365-2133.2003.05418.xDOI Listing

Publication Analysis

Top Keywords

microg ml-1
28
vitro susceptibility
16
ciclopirox terbinafine
16
+/-
15
ciclopirox
14
susceptibility testing
12
terbinafine
12
ciclopirox combination
12
mic values
12
values microg
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!