We investigated the effects of glucose and beta-cell growth factors (IGF-I, IGF-II, bFGF) on growth and apoptosis in the presence and absence of apoptosis inducing cytokines (IFNgamma, Il-1beta, TNFalpha). Rat INS-1E beta-cell viability was measured by WST-1 viability assay and cell counting, apoptosis by FACS analysis of annexin-V-FITC and fluorescein-dUTP (TUNEL-staining)-positive cells. Glucose alone maintained INS-1E beta-cell viability at high physiological concentrations (6.2-12.5 mmol/l), addition of IGF-II alone or in combination with bFGF further increased these glucose effects. The cytokines IFNg and IL-1beta, but not TNFalpha strongly induced INS-1E beta-cell apoptosis. Interestingly, glucose alone induced apoptosis at extremely low or very high concentrations. In combination with IFNg, low glucose (1.6 mmol/l) increased apoptosis by 25.6% (1SD 5.0%) and high glucose (50 mmol/l) by 22.8% (1SD 2.8%) compared to 12.5 mmol/l glucose. In contrast, glucose failed to modulate IL-1beta-induced apoptosis. Most importantly, IGF-II and bFGF inhibited apoptosis induced by IFNg, but not by IL-1beta. Therefore, IGF signaling, supported by bFGF and optimal glucose levels, maintains beta-cell viability in vitro. Cytokines IFNg and IL-1beta differentially interfere with intracellular signaling cascades stimulated by IGFs and bFGF or glucose, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/s-2003-41621 | DOI Listing |
Tissue Cell
January 2025
Department of Endocrinology, Fuyang Cancer Hospital, Fuyang, Anhui Province 236000, PR China. Electronic address:
Background: Diabetes mellitus (DM), a chronic metabolic disease, is characterized by long-term hyperglycemia resulting from the defect of insulin production and insulin resistance. The damage and dysfunction of pancreatic β-cells is a main link in DM development.
Methods: In this work, pancreatic β-cell line INS-1E cells were exposed to 30 mM glucose for 48 h to construct an in vitro DM model.
Life Sci
February 2025
Immuno-Endocrinology, Diabetes & Metabolism Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET - Universidad Austral, Pilar, Argentina; Facultad de Ciencias Biomédicas, , Universidad Austral, Pilar, Argentina. Electronic address:
Aims: Type 2 diabetes (T2D) is a prevalent metabolic disease linked to obesity and metabolic syndrome (MS). The glucolipotoxic environment (GLT) impacts tissues causing low-grade inflammation, insulin resistance and the gradual loss of pancreatic β-cell function, leading to hyperglycemia. We have previously shown that Compound A (CpdA), a plant-derived dissociative glucocorticoid receptor-modulator with inflammation-suppressive activity, displays protective effects on β-cells in type 1 diabetes murine models.
View Article and Find Full Text PDFJ Gastroenterol
January 2025
Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
Cells
November 2024
Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine of the Slovak Academy of Sciences, 841 04 Bratislava, Slovakia.
Sarco/endoplasmic reticulum Ca-ATPase (SERCA) is an important regulatory protein responsible for maintaining calcium homeostasis within cells. Impairment of SERCA associated with activity/expression decrease has been implicated in multiple chronic conditions, including cardiovascular diseases, diabetes, cancer, neurodegenerative diseases, and skeletal muscle pathologies. Natural polyphenols have been recognized to interact with several target proteins involving SERCA.
View Article and Find Full Text PDFFEBS J
January 2025
Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
Type 1 diabetes (T1D) is characterized by immune cell infiltration in the islets of Langerhans, leading to the destruction of insulin-producing beta cells. This destruction is driven by secreted cytokines and cytotoxic T cells inducing apoptosis in beta cells. Butyrate, a metabolite produced by the gut microbiota, has been shown to have various health benefits, including anti-inflammatory and anti-diabetic effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!