Opposing effects of phosphoenolpyruvate and pyruvate with Mg(2+) on the conformational stability and dimerization of phosphotransferase enzyme I from Escherichia coli.

Protein Sci

Section on Protein Chemistry, Laboratory of Biochemistry, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland 20892-8012, USA.

Published: September 2003

The activity of enzyme I (EI), the first protein in the bacterial PEP:sugar phosphotransferase system, is regulated by a monomer-dimer equilibrium where a Mg(2+)-dependent autophosphorylation by PEP requires the homodimer. Using inactive EI(H189A), in which alanine is substituted for the active-site His189, substrate-binding effects can be separated from those of phosphorylation. Whereas 1 mM PEP (with 2 mM Mg(2+)) strongly promotes dimerization of EI(H189A) at pH 7.5 and 20 degrees C, 5 mM pyruvate (with 2 mM Mg(2+)) has the opposite effect. A correlation between the coupling of N- and C-terminal domain unfolding, measured by differential scanning calorimetry, and the dimerization constant for EI, determined by sedimentation equilibrium, is observed. That is, when the coupling between N- and C-terminal domain unfolding produced by 0.2 or 1.0 mM PEP and 2 mM Mg(2+) is inhibited by 5 mM pyruvate, the dimerization constant for EI(H189A) decreases from > 10(8) to < 5 x 10(5) or 3 x 10(7) M(-1), respectively. Incubation of the wild-type, dephospho-enzyme I with the transition-state analog phosphonopyruvate and 2 mM Mg(2+) also increases domain coupling and the dimerization constant approximately 42-fold. With 2 mM Mg(2+) at 15-25 degrees C and pH 7.5, PEP has been found to bind to one site/monomer of EI(H189A) with K(A)' approximately 10(6) M(-1) (deltaG' = -8.05 +/- 0.05 kcal/mole and deltaH = +3.9 kcal/mole at 20 degrees C); deltaC(p) = -0.33 kcal K(-1) mole(-1). The binding of PEP to EI(H189A) is synergistic with that of Mg(2+). Thus, physiological concentrations of PEP and Mg(2+) increase, whereas pyruvate and Mg(2+) decrease the amount of dimeric, active, dephospho-enzyme I.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2324000PMC
http://dx.doi.org/10.1110/ps.0352103DOI Listing

Publication Analysis

Top Keywords

pyruvate mg2+
12
pep mg2+
12
dimerization constant
12
mg2+
9
coupling c-terminal
8
c-terminal domain
8
domain unfolding
8
pep
6
dimerization
5
eih189a
5

Similar Publications

Background: Poplar canker caused by Botryosphaeria dothidea is one of the most severe plant disease of poplars worldwide. In our study, we aimed to investigate the modes of antagonism by fermentation broth supernatant (FBS) of Streptomyces spiroverticillatus HS1 against B. dothidea.

View Article and Find Full Text PDF

The bioconversion of 4-hydroxy-2-keto acid derivatives via aldol condensation of formaldehyde and pyruvate has received substantial attention as potential source of chemicals for production of amino acids, hydroxy carboxylic acids, and chiral aldehydes. We developed an environmentally friendly biocatalyst consisting of a novel thermostable class II pyruvate aldolase from Deinococcus radiodurans with maltose-binding protein (MBP-DrADL), which has specific activity of 46.3 µmol min mg.

View Article and Find Full Text PDF

Nicotinamide adenine dinucleotide (NAD) is a redox active molecule that is universally found in biology. Despite the importance and simplicity of this molecule, few reports exist that investigate which molecular features are important for the activity of this ribodinucleotide. By exploiting the nonenzymatic reduction and oxidation of NAD by pyruvate and methylene blue, respectively, we were able to identify key molecular features necessary for the intrinsic activity of NAD through kinetic analysis.

View Article and Find Full Text PDF

Oxaloacetic acid (OAA) is a β-ketocarboxylic acid, which plays an important role as an intermediate in some metabolic pathways, including the tricarboxylic acid cycle, gluconeogenesis and fatty acid biosynthesis. Animal studies have indicated that supplementing oxaloacetic acid shows an increase of lifespan and other substantial health benefits including mitochondrial DNA protection, and protection of retinal, neural and pancreatic tissues. Most of the chemical transformations of OAA in the metabolic pathways have been extensively studied; however, the understanding of decarboxylation of OAA at the atomic level is relatively lacking.

View Article and Find Full Text PDF

PKM2 is a glycolytic pyruvate kinase isoenzyme, and its role in neurological diseases has been published. However, the role and mechanism of PKM2 in the process of status epilepticus have not been reported. The purpose of this study is to explore the role and mechanism of PKM2 in epilepsy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!