Depletion of H2A-H2B dimers in Saccharomyces cerevisiae triggers meiotic arrest by reducing IME1 expression and activating the BUB2-dependent branch of the spindle checkpoint.

Genetics

Waksman Institute of Microbiology and The Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ 08854, USA.

Published: August 2003

In the yeast Saccharomyces cerevisiae, diploid strains carrying homozygous hta1-htb1Delta mutations express histone H2A-H2B dimers at a lower level than do wild-type cells. Although this mutation has only minor effects on mitotic growth, it causes an arrest in sporulation prior to the first meiotic division. In this report, we show that the hta1-htb1Delta mutant exhibits reduced expression of early and middle-sporulation-specific genes and that the meiotic arrest of the hta1-htb1Delta mutant can be partially bypassed by overexpression of IME1. Additionally, deletions of BUB2 or BFA1, components of one branch of the spindle checkpoint pathway, bypass the meiotic arrest. Mutations in the other branch of the pathway or in the pachytene checkpoint are unable to suppress the meiotic block. These observations indicate that depletion of the H2A-H2B dimer blocks sporulation by at least two mechanisms: disruption of the expression of meiotic regulatory genes and activation of the spindle checkpoint. Our results show that the failure to progress through the meiotic pathway is not the result of global chromosomal alterations but that specific aspects of meiosis are sensitive to depletion of the H2A-H2B dimer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1462647PMC
http://dx.doi.org/10.1093/genetics/164.4.1333DOI Listing

Publication Analysis

Top Keywords

depletion h2a-h2b
12
meiotic arrest
12
spindle checkpoint
12
h2a-h2b dimers
8
saccharomyces cerevisiae
8
branch spindle
8
hta1-htb1delta mutant
8
h2a-h2b dimer
8
meiotic
7
dimers saccharomyces
4

Similar Publications

Unlabelled: Herpes simplex virus 1 (HSV-1) transcription is restricted in latently infected neurons and the genomes are in mostly silenced chromatin, whereas all viral genes are transcribed in lytically infected cells, in which the genomes are dynamically chromatinized. Epigenetic regulation modulates HSV-1 transcription during lytic, latent, and reactivating infections but the precise mechanisms are not fully defined. Nucleosomes are dynamic: they slide, breathe, assemble, and disassemble.

View Article and Find Full Text PDF

Unlabelled: Herpes simplex virus 1 (HSV-1) transcription is restricted in latently infected neurons and the genomes are in mostly silenced chromatin, whereas all viral genes are transcribed in lytically infected cells, in which the genomes are dynamically chromatinized. Epigenetic regulation modulates HSV-1 transcription during lytic, latent, and reactivating infections, but the precise mechanisms are not fully defined. Nucleosomes are dynamic; they slide, breathe, assemble and disassemble.

View Article and Find Full Text PDF

The variant histone H2A.Z is inserted into nucleosomes immediately downstream of promoters and is important for transcription. The site-specific deposition of H2A.

View Article and Find Full Text PDF

The histone chaperone ANP32B regulates chromatin incorporation of the atypical human histone variant macroH2A.

Cell Rep

October 2023

Biomedical Center (BMC), Department of Physiological Chemistry, Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany; Eisbach Bio GmbH, 82152 Planegg-Martinsried, Germany. Electronic address:

All vertebrate genomes encode for three large histone H2A variants that have an additional metabolite-binding globular macrodomain module, macroH2A. MacroH2A variants impact heterochromatin organization and transcription regulation and establish a barrier for cellular reprogramming. However, the mechanisms of how macroH2A is incorporated into chromatin and the identity of any chaperones required for histone deposition remain elusive.

View Article and Find Full Text PDF

A potential histone-chaperone activity for the MIER1 histone deacetylase complex.

Nucleic Acids Res

July 2023

Institute for Structural and Chemical Biology & Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK.

Histone deacetylases 1 and 2 (HDAC1/2) serve as the catalytic subunit of six distinct families of nuclear complexes. These complexes repress gene transcription through removing acetyl groups from lysine residues in histone tails. In addition to the deacetylase subunit, these complexes typically contain transcription factor and/or chromatin binding activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!