Introduction: Atrial arrhythmias have emerged as a topic of great interest for clinical electrophysiologists. Noninvasive imaging of electrical function in humans may be useful for computer-aided diagnosis and treatment of cardiac arrhythmias, which can be accomplished by the fusion of data from ECG mapping and magnetic resonance imaging (MRI).

Methods And Results: In this study, a bidomain-theory-based surface heart model activation time (AT) imaging approach was applied to paced rhythm data from four patients. Pacing sites were the right superior pulmonary vein, left inferior pulmonary vein, left superior pulmonary vein, coronary sinus, posterior wall of right atrium, and high right atrium. For coronary sinus pacing, the AT pattern of the right atrium was compared with a CARTO map. The root mean square error between CARTO geometry (85 nodal points) and the surface model of the right atrium was 8.6 mm. The correlation coefficient of the noninvasively obtained AT map of the right atrium and the CARTO map was 0.76. All pulmonary vein pacing sites were identified. The reconstructed pacing site of right posterior atrial pacing correlates with the invasively determined pacing catheter position with a localization distance of 4 mm.

Conclusion: The individual anatomic model of the atria of each patient enables accurate noninvasive AT imaging within the atria, resulting in a localization error for the pacing sites within 10 mm. Our findings may have implications for imaging of atrial activity in patients with focal arrhythmias or focal triggers.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1540-8167.2003.02558.xDOI Listing

Publication Analysis

Top Keywords

pulmonary vein
16
pacing sites
12
paced rhythm
8
rhythm data
8
noninvasive imaging
8
superior pulmonary
8
vein left
8
coronary sinus
8
carto map
8
pacing
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!