Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study characterizes cadmium (Cd) uptake by the waterlily Nymphaea aurora, (Nymphaeaceae) in two systems: a model hydroponic Cd solution and heavily polluted sludge from two sites in Israel. The uptake of Cd from hydroponic solution resulted in Cd storage in petioles and laminae of Nymphaea, as well as in the roots. The pH of the solution affected Cd solubility and availability, with pH 5.5 yielding maximum Cd content in the plant (140 mg Cd per g DW). Cd uptake was reduced by the addition of EDTA to the hydroponic growth medium, although EDTA enhanced heavy metal uptake by terrestrial plants. Nymphaea efficiently reduced the concentration of Cd in heavy metal polluted urban and industrial sludge and the amount of Cd uptake was enhanced by the addition of KCl to the sludge and by adjustment of the pH to 5.5. The inherent growth patterns of Nymphaea plants allowed Cd uptake by the shoot and root, and resulted in maximum contact between the various plant parts and the growth media. Thus, Nymphaea has potential as an optimal, highly effective phytoremediation tool for the removal of Cd from polluted waste sources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/713610178 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!