Proinsulin biosynthesis is regulated in response to nutrients, most notably glucose. In the short term (/=10-fold). Importantly, neither exogenously added nor secreted insulin were found to play any role in regulating insulin secretion, proinsulin translation, preproinsulin mRNA levels, or total protein synthesis. The results presented here indicate that long term nutritional state sets the preproinsulin mRNA level in the beta-cell at which translation control regulates short term changes in rates of proinsulin biosynthesis in response to glucose, but this is not mediated by any autocrine effect of insulin.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M303509200DOI Listing

Publication Analysis

Top Keywords

proinsulin biosynthesis
12
preproinsulin mrna
12
mrna levels
8
secreted insulin
8
short term
8
glucose-induced translational
4
translational control
4
proinsulin
4
control proinsulin
4
biosynthesis proportional
4

Similar Publications

The coexistence of depression and type 2 diabetes mellitus (T2DM) can significantly worsen disease prognosis and lower quality of life. Emerging evidence suggests that vitamin D deficiency contributes to the progression of T2DM and is closely associated with the development of depression. The aim of this study was to investigate the effects of cholecalciferol on depression in patients with T2DM, exploring its mechanisms by analyzing its impact on C-peptide, serotonin, and neurotrophin-3 levels.

View Article and Find Full Text PDF

Regular aerobic exercise has a significant impact on glucose metabolism and lipid profiles, contributing to overall health improvement. However, evidence for optimal exercise duration to achieve these effects is limited. This study aims to explore the effects of 4 and 8 weeks of moderate-intensity aerobic exercise on glucose metabolism, lipid profiles, and associated metabolic changes in young female students with insulin resistance and varying body mass, seeking to determine the optimal duration for physiological adaptations.

View Article and Find Full Text PDF

Pumpkin extract has been shown to alleviate hyperglycemic symptoms by improving glucose metabolism disorders. However, the specific active components responsible for its hypoglycemic effects and the underlying molecular mechanisms remain unclear. In this study, db/db mice underwent a 4-week dietary intervention with two pumpkin flours (PF1 and PF2), total dietary fiber (TDF), soluble dietary fiber (SDF), and insoluble dietary fiber (IDF), with acarbose serving as a positive control.

View Article and Find Full Text PDF

Liver cirrhosis is a chronic disease caused by long-term inflammation and fibrosis of the liver. Early identification and intervention in liver cirrhosis have become an important goal for researchers to explore the influence of some metabolic factors on the risk of liver cirrhosis in terms of genetic susceptibility. Data from genome-wide association studies (GWASs) of fourteen metabolic factors and liver cirrhosis were obtained from publicly available databases.

View Article and Find Full Text PDF

The microenvironment cell index is a novel indicator for the prognosis and therapeutic regimen selection of cancers.

J Transl Med

January 2025

Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.

Background: It is worthwhile to establish a prognostic prediction model based on microenvironment cells (MCs) infiltration and explore new treatment strategies for triple-negative breast cancer (TNBC).

Methods: The xCell algorithm was used to quantify the cellular components of the TNBC microenvironment based on bulk RNA sequencing (bulk RNA-seq) data. The MCs index (MCI) was constructed using the least absolute shrinkage and selection operator Cox (LASSO-Cox) regression analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!