Cellugyrin represents a ubiquitously expressed four-transmembrane domain protein that is closely related to synaptic vesicle protein synaptogyrin and, more remotely, to synaptophysin. We report here that, in PC12 cells, cellugyrin is localized in synaptic-like microvesicles (SLMVs), along with synaptogyrin and synaptophysin. Upon overexpression of synaptophysin in PC12 cells, it is localized in rapidly sedimenting membranes and practically is not delivered to the SLMVs. On the contrary, the efficiency of the SLMV targeting of exogenously expressed cellugyrin and synaptogyrin is high. Moreover, expression of cellugyrin (or synaptogyrin) in PC12 cells dramatically and specifically increases SLMV targeting of endogenous synaptophysin. Finally, we utilized the SLMV purification scheme on a series of non-neuroendocrine cell types including the mouse fibroblast cell line 3T3-L1, the Chinese hamster ovary cell line CHO-K1, and the monkey kidney epithelial cell line COS7 and found that a cellugyrin-positive microvesicular compartment was present in all cell types tested. We suggest that synaptic vesicles have evolved from cellugyrin-positive ubiquitous microvesicles and that neuroendocrine SLMVs represent a step along that pathway of evolution.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M304174200DOI Listing

Publication Analysis

Top Keywords

pc12 cells
16
cellugyrin synaptogyrin
12
cells cellugyrin
8
slmv targeting
8
cell types
8
cellugyrin
5
synaptophysin
5
cell
5
synaptogyrin facilitate
4
facilitate targeting
4

Similar Publications

O-GlcNAcylation is a post-translational modification characterized by the covalent attachment of a single moiety of GlcNAc on serine/threonine residues in proteins. Tyrosine hydroxylase (TH), the rate-limiting step enzyme in the catecholamine synthesis pathway and responsible for production of the dopamine precursor, L-DOPA, has its activity regulated by phosphorylation. Here, we show an inverse feedback mechanism between O-GlcNAcylation and phosphorylation of TH at serine 40 (TH pSer40).

View Article and Find Full Text PDF

Liposomes-Loaded miR-9-5p Alleviated Hypoxia-Ischemia-Induced Mitochondrial Oxidative Stress by Targeting ZBTB20 to Inhibiting Nrf2/Keap1 Interaction in Neonatal Mice.

Antioxid Redox Signal

January 2025

Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.

Hypoxia ischemia (HI) is a leading cause of cerebral palsy and long-term neurological sequelae in infants. Given that mitochondrial dysfunction in neurons contributes to HI brain damage, this study aimed to investigate the regulatory role of miR-9-5p in mitochondrial function following HI injury. Overexpression of miR-9-5p in HI mice or HO-exposed PC12 cells suppressed neuronal injury, associated with increased mitochondrial copy number, normalizing mitochondrial membrane potential, improved nuclear factor-erythroid factor 2-related factor 2 (Nrf2) activation, and downregulation of Keap1.

View Article and Find Full Text PDF

The rising global focus on healthy lifestyles and environmental sustainability has prompted interest in repurposing plant-based by-products for health benefits. With increasing life expectancy, the incidence of neurodegenerative diseases-characterized by complex, multifactorial mechanisms such as abnormal protein aggregation, mitochondrial dysfunction, oxidative stress, and inflammation-continues to grow. Medicinal plants, with their diverse bioactive compounds, offer promising therapeutic avenues for such conditions.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a limb movement disorder caused by the degeneration of brain neurons and seriously affects the quality of life of the elderly. However, the current drugs are symptomatic treatments that cannot prevent or delay the development of the disease. Targeted therapy for pathogenesis may be the direction of development in the future.

View Article and Find Full Text PDF

Growing evidence suggests that plant compounds are emerging as a tremendous source for slowing the onset and progression of Alzheimer's disease (AD). Ursonic acid (UNA) is a naturally occurring pentacyclic triterpenoid with some hypoglycemic, anticancer, and antiinflammatory activities. However, the pharmacological effects of UNA on AD are still unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!