A prophylactic vaccine for HIV-1 will probably require the induction and maintenance of both humoral and cellular immunity. One current strategy to achieve such long term immune responses is a prime-boost vaccination approach using a DNA priming inoculation, followed by recombinant viral boost. In this report we use a novel prime-boost approach in which the priming injections consist of recombinant HIV-1 Gag protein mixed with cytosine phosphate guanosine oligodeoxynucleotide (CpG ODN), followed by recombinant adenoviral boost expressing HIV-1 Gag. Analysis of the immune responses indicates that HIV-1 Gag protein plus CpG ODN immunization alone induces potent humoral as well as Th1 and CD8+ T cell responses. Boosting with recombinant adenovirus strikingly enhances CD8+, but not Th1, T cell responses, resulting in CD8+ T cell responses far greater in magnitude than Th1 responses. Furthermore, the Th1 and CD8+ T cell responses following prime-boost immunization were seen in both lymphoid and peripheral mucosal organs and were sustained over several months. Together, these data suggest a new immunization approach for elicitation of long term humoral and cellular immune responses.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.171.5.2538DOI Listing

Publication Analysis

Top Keywords

hiv-1 gag
16
immune responses
16
cell responses
16
gag protein
12
humoral cellular
12
cd8+ cell
12
responses
9
prime-boost vaccination
8
cytosine phosphate
8
phosphate guanosine
8

Similar Publications

HIV-1 Vif global diversity and possible APOBEC-mediated response since 1980.

Virus Evol

December 2024

U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD 20910, USA.

HIV-1 Vif's principal function is to counter the antiretroviral activities of DNA-editing APOBEC3 cytidine deaminases. Unconstrained APOBEC3 activity introduces premature stop codons in HIV-1 genes and can lead to viral inactivation. To investigate the evolution and diversification of Vif over the HIV-1 pandemic and document evidence of APOBEC3-mediated pressure, we analyzed 4612 publicly available sequences derived from 10 dominant subtypes and circulating recombinant forms (CRFs) using the Hervé platform.

View Article and Find Full Text PDF

Subtypes A1 and D, and recombinant HIV-1 natural polymorphisms associated with lenacapavir drug resistance in Uganda.

J Antimicrob Chemother

January 2025

Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA.

Background: Lenacapavir, a novel HIV-1 capsid inhibitor, shows promise for treating MDR HIV-1, as well as for pre-exposure prophylaxis (PrEP) in prevention of HIV infection. Its unique mechanism and lack of cross-resistance with other antiretroviral classes make lenacapavir a significant addition to HIV therapy. The clinical trials CALIBRATE and CAPELLA have demonstrated high viral suppression rates in both ART-naive individuals and individuals with MDR HIV-1.

View Article and Find Full Text PDF

Maturation inhibitors (MIs) block HIV-1 maturation by preventing the cleavage of the capsid protein and spacer peptide 1 (CA-SP1). Bevirimat (BVM), a first-in-class MI, displayed sub-optimal efficacy in clinical trials due to presence of SP1:V7A polymorphism in the Gag protein.This polymorphism is inherently present in HIV-1 subtype C and conferred resistance to BVM.

View Article and Find Full Text PDF

Lenacapavir (LEN) is a highly potent, long-acting antiretroviral medication for treating people infected with muti-drug-resistant HIV-1 phenotypes. The inhibitor targets multifaceted functions of the viral capsid protein (CA) during HIV-1 replication. Previous studies have mainly focused on elucidating LEN's mode of action during viral ingress.

View Article and Find Full Text PDF

Recombination contributes substantially to the genetic diversity of HIV-1. Here we reported a novel HIV-1 recombinant detected from a Chinese labor who had been to Uganda as an immigrant worker using nanopore sequencing. Near full-length genome (NFLG) phylogenetic analysis showed that the novel HIV-1 recombinant HIV-sd1801 stood in a distinct branch between the CRF130_A1B/CRF131_A1B and CRF50_A1D/CRF84_A1D reference sequences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!