Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies.

Cancer Treat Rev

Department of Surgery, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, 9, Dublin, Ireland.

Published: August 2003

Tissue hypoxia occurs where there is an imbalance between oxygen supply and consumption. Hypoxia occurs in solid tumours as a result of an inadequate supply of oxygen, due to exponential cellular proliferation and an inefficient vascular supply. It is an adverse prognostic indicator in cancer as it is associated with tumour progression and resistance to therapy. The expression of several genes controlling tumour cell survival are regulated by hypoxia, e.g., growth factors governing the formation of new blood vessels, and hypoxia-responsive transcription factors modulating the expression of genes, which promote tumour cell survival. This review outlines some of the pathways by which tumour hypoxia leads to chemotherapeutic resistance, directly due to lack of oxygen availability, and indirectly due to alterations in the proteome/genome, angiogenesis and pH changes. Some innovative therapies are also detailed which may potentially minimise or eliminate these problems associated with targeting solid tumours.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0305-7372(03)00003-3DOI Listing

Publication Analysis

Top Keywords

tumour hypoxia
8
chemotherapeutic resistance
8
hypoxia occurs
8
solid tumours
8
expression genes
8
tumour cell
8
cell survival
8
tumour
5
hypoxia chemotherapeutic
4
resistance hypoxia-related
4

Similar Publications

Berberine (BBR), an isoquinoline alkaloid abundant in Coptis chinensis, exhibits anti-tumor and hypoglycemic properties. The regulation of tumor cell homeostasis and metabolism is greatly influenced by Hypoxia-inducible factor-1α (HIF-1α). This research aims to elucidate whether BBR inhibits the progression of hepatocellular carcinoma (HCC) by modulating HIF-1α expression.

View Article and Find Full Text PDF

Hypoxic tumors present a significant challenge in cancer therapy due to their ability to adaptation in low-oxygen environments, which supports tumor survival and resistance to treatment. Enhanced mitophagy, the selective degradation of mitochondria by autophagy, is a crucial mechanism that helps sustain cellular homeostasis in hypoxic tumors. In this study, we develop an azocalix[4]arene-modified supramolecular albumin nanoparticle, that co-delivers hydroxychloroquine and a mitochondria-targeting photosensitizer, designed to induce cascaded oxidative stress by regulating mitophagy for the treatment of hypoxic tumors.

View Article and Find Full Text PDF

Dually Fluorinated Unimolecular Micelles for Stable Oxygen-Carrying and Enhanced Photosensitive Efficiency to Boost Photodynamic Therapy against Hypoxic Tumors.

Acta Biomater

January 2025

State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Deign and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China. Electronic address:

Tumor hypoxia is one of key challenges in deep tumor photodynamic therapy (PDT), and how to fix this issue is attracting ongoing concerns worldwide. This work demonstrates dually fluorinated unimolecular micelles with desirable and stable oxygen-carrying capacity, high cellular penetration, and integrative type I & II PDT for deep hypoxic tumors. Dually fluorinated star copolymers with fluorinated phthalocyanines as the core are prepared through photoinitiated electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization under irradiation with NIR LED light at room temperature, followed by assembly into unimolecular micelles.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs), known for their exceptional in situ encapsulation and precise release capabilities, are emerging as pioneering drug delivery systems. This study introduces a hypoxia-responsive COF designed to encapsulate the chemotherapy drug gambogic acid (GA) in situ. Bimetallic gold-palladium islands were grown on UiO-66-NH (UiO) to form UiO@Au-Pd (UAPi), which were encapsulated with GA through COF membrane formation, resulting in a core-shell structure (UAPiGC).

View Article and Find Full Text PDF

Pericytes in Glioblastoma: Hidden Regulators of Tumor Vasculature and Therapy Resistance.

Cancers (Basel)

December 2024

Research Group on Tumors of the Central Nervous System, Pathology Department, University of Valencia, 46010 Valencia, Spain.

Glioblastoma IDH wild type (GB), the most common malignant primary brain tumor, is characterized by rapid proliferation, extensive infiltration into surrounding brain tissue, and significant resistance to current therapies. Median survival is only 15 months despite extensive clinical efforts. The tumor microenvironment (TME) in GB is highly specialized, supporting the tumor's aggressive behavior and its ability to evade conventional treatments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!